34 research outputs found

    Plane-Parallel Radiance Transport for Global Illumination in Vegetation

    Get PDF
    This paper applies plane parallel radiance transport techniques to scattering from vegetation. The leaves, stems, and branches are represented as a volume density of scattering surfaces, depending only on height and the vertical component of the surface normal. Ordinary differential equations are written for the multiply scattered radiance as a function of the height above the ground, with the sky radiance and ground reflectance as boundary conditions. They are solved using a two-pass integration scheme to unify the two-point boundary conditions, and Fourier series for the dependence on the azimuthal angle. The resulting radiance distribution is used to precompute diffuse and specular `ambient` shading tables, as a function of height and surface normal, to be used in rendering, together with a z-buffer shadow algorithm for direct solar illumination

    On the Computational Complexity of Hierarchical Radiosity

    No full text

    Point-Based Impostors for Real-Time Visualization

    No full text

    Efficient Glossy Global Illumination with Interactive Viewing

    No full text
    The ability to perform interactive walkthroughs of global illumination solutions including glossy effects is a challenging open problem. In this paper we overcome certain limitations of previous approaches. We first introduce a novel, memory- and compute-efficient representation of incoming illumination, in the context of a hierarchical radiance clustering algorithm. We then represent outgoing radiance with an adaptive hierarchical basis, in a manner suitable for interactive display. Using appropriate refinement and display strategies, we achieve walkthroughs of glossy solutions at interactive rates for non-trivial scenes. In addition, our implementation has been developed to be portable and easily adaptable as an extension to existing, diffuse-only, hierarchical radiosity systems. We present results of the implementation of glossy global illumination in two independent global illumination systems

    Hierarchical Techniques for Global Illumination Computations -- Recent Trends and Developments

    No full text
    Since the beginning of computer graphics, one of the primary goals has been to create convincingly realistic images of three-dimensional environments that would be impossible to distinguish from photographs of the real scene. The goal to create photo-realistic images has lead to the development of completely new software techniques for dealing with the inherent geometric and optical complexity of real world scenes. This paper gives an overview of advanced algorithms for photorealistic rendering and in particular discusses hierarchical techniques for global illumination computations
    corecore