149 research outputs found

    Exploring foraminiferal Sr/Ca as a new carbonate system proxy

    Get PDF
    In present day paleoclimate research one of the most pressing challenges is the reconstruction of atmospheric CO2 concentrations. A variety of proxies for several components of the marine inorganic carbon system have been developed in this context (e.g. B isotopes, B/Ca, U/Ca) to allow reconstruction of past seawater pH, HCO3− and CO32− and thereby facilitate estimates of past atmospheric pCO2. Based on culture experiments using the benthic foraminifera Ammonia sp. we describe a positive correlation between Sr/Ca and the carbonate system, namely DIC/bicarbonate ion concentration. Foraminiferal Sr/Ca ratios provide potentially additional constraints on the carbonate system proxy, because the analysis of foraminiferal carbonate Sr/Ca is straightforward and not easily contaminated. Applying our calibration to a published dataset of paleo-Sr/Ca suggests the validity of Sr/Ca as a carbonate system proxy. Furthermore, we explore how our data can be used to advance conceptual understanding of the foraminiferal biomineralization mechanism

    Susceptibility of Two Southern Ocean Phytoplankton Key Species to Iron Limitation and High Light

    Get PDF
    Although iron (Fe) availability primarily sets the rate of phytoplankton growth and primary and export production in the Southern Ocean, other environmental factors, most significantly light, also affect productivity. As light availability strongly influences phytoplankton species distribution in low Fe-waters, we investigated the combined effects of increasing light (20, 200, and 500 ÎŒmol photons m-2 s-1) in conjunction with different Fe (0.4 and 2 nM) availability on the physiology of two ecologically relevant phytoplankton species in the Southern Ocean, Chaetoceros debilis (Bacillariophyceae) and Phaeocystis antarctica (Haptophyceae). Fe-deficient cells of P. antarctica displayed similar high growth rates at all irradiances. In comparison, Fe-deplete C. debilis cells grew much slower under low and medium irradiance and were unable to grow at the highest irradiance. Interestingly, Fe-deficient C. debilis cells were better protected against short-term excessive irradiances than P. antarctica. This tolerance was apparently counteracted by strongly lowered growth and particulate organic carbon production rates of the diatom relative to the prymnesiophyte. Overall, our results show that P. antarctica was the more tolerant species to changes in the availability of Fe and light, providing it a competitive advantage under a high light regime in Fe-deficient waters as projected for the future

    Prediction of photo-protective carotenoids at global scale

    Get PDF
    As phytoplankton cells are exposed to natural dynamic light fields, they develop various combined mechanisms in order to optimize their light harvesting and photosynthetic electron transport. Especially under high light conditions algal cells evolve various physiological protective mechanisms to dispose excess light energy to prevent damage of the photosynthetic apparatus. Among these mechanisms the so-called xanthophyll cycle (XC) is one of the most important one, which avoids overexcitation of the photosynthetic systems by thermal dissipation of the excess energy. In response to high light phytoplankton cells accumulate XC-pigments to avoid the photodamage, which would cause photoinhibition. The mechanistic model for photoinhibition proposed by (Marshall, Geider & Flynn 2000) predicts how changes in light, nutrients and temperature influence the parameters of the photosynthesis-irradiance relationship. The model does not parameterize a variable XC-pigments pool size, hence, it predicts the changes in light absorption parameters that would take place with a constant XC-pigments pool. We inserted this model in the global biogeochemical model REcoM2 to predict the photo-protective needs of phytoplankton in terms of the XC-pigments pool size. Two global scale databases of HPLC pigments showed how the predicted photoprotective response correlates with photo-protective carotenoids pool at global scale, with the advantage that the model prediction is separable per phytoplankton group. Our results show higher concentration of XC-pigments in lower latitudes being non-diatom phytoplankton the main contributor. XC-pigments pool size and its relation to photosynthetic pigments are relevant when describing the light harvesting by phytoplankton at the global scale

    Modelling Silicate - Nitrate - Ammonium Co-Limitation of Algal Growth and the Importance of Bacterial Remineralisation Based on an Experimental Arctic Coastal Spring Bloom Culture Study

    Get PDF
    Arctic coastal ecosystems are rapidly changing due to climate warming, which makes modelling their productivity crucially important to better understand future changes. System primary production in these systems is highest during the pronounced spring bloom, typically dominated by diatoms. Eventually the spring blooms terminate due to silicon or nitrogen limitation. Bacteria can play an important role for extending bloom duration and total CO2 fixation through ammonium regeneration. Current ecosystem models often simplify the effects of nutrient co-limitations on algal physiology and cellular ratios and neglect bacterial driven regeneration, leading to an underestimation of primary production. Detailed biochemistry- and cell-based models can represent these dynamics but are difficult to tune in the environment. We performed a cultivation experiment that showed typical spring bloom dynamics, such as extended algal growth via bacteria ammonium remineralisation, and reduced algal growth and inhibited chlorophyll synthesis under silicate limitation, and gradually reduced nitrogen assimilation and chlorophyll synthesis under nitrogen limitation. We developed a simplified dynamic model to represent these processes. The model also highlights the importance of organic matter excretion, and post bloom ammonium accumulation. Overall, model complexity is comparable to other ecosystem models used in the Arctic while improving the representation of nutrient co-limitation related processes. Such model enhancements that now incorporate increased nutrient inputs and higher mineralization rates in a warmer climate will improve future predictions in this vulnerable system

    Li Partitioning Into Coccoliths of Emiliania huxleyi : Evaluating the General Role of “Vital Effects” in Explaining Element Partitioning in Biogenic Carbonates

    Get PDF
    Emiliania huxleyi cells were grown in artificial seawater of different Li and Ca concentrations and coccolith Li/Ca ratios determined. Coccolith Li/Ca ratios were positively correlated to seawater Li/Ca ratios only if the seawater Li concentration was changed, not if the seawater Ca concentration was changed. This Li partitioning pattern of E. huxleyi was previously also observed in the benthic foraminifer Amphistegina lessonii and inorganically precipitated calcite. We argue that Li partitioning in both E. huxleyi and A. lessonii is dominated by a coupled transmembrane transport of Li and Ca from seawater to the site of calcification. We present a refined version of a recently proposed transmembrane transport model for Li and Ca. The model assumes that Li and Ca enter the cell via Ca channels, the Li flux being dependent on the Ca flux. While the original model features a linear function to describe the experimental data, our refined version uses a power function, changing the stoichiometry of Li and Ca. The version presented here accurately predicts the observed dependence of DLi on seawater Li/Ca ratios. Our data demonstrate that minor element partitioning in calcifying organisms is partly mediated by biological processes even if the partitioning behavior of the calcifying organism is indistinguishable from that of inorganically precipitated calcium carbonate

    Li Partitioning Into Coccoliths of Emiliania huxleyi : Evaluating the General Role of “Vital Effects” in Explaining Element Partitioning in Biogenic Carbonates

    Get PDF
    Emiliania huxleyi cells were grown in artificial seawater of different Li and Ca concentrations and coccolith Li/Ca ratios determined. Coccolith Li/Ca ratios were positively correlated to seawater Li/Ca ratios only if the seawater Li concentration was changed, not if the seawater Ca concentration was changed. This Li partitioning pattern of E. huxleyi was previously also observed in the benthic foraminifer Amphistegina lessonii and inorganically precipitated calcite. We argue that Li partitioning in both E. huxleyi and A. lessonii is dominated by a coupled transmembrane transport of Li and Ca from seawater to the site of calcification. We present a refined version of a recently proposed transmembrane transport model for Li and Ca. The model assumes that Li and Ca enter the cell via Ca channels, the Li flux being dependent on the Ca flux. While the original model features a linear function to describe the experimental data, our refined version uses a power function, changing the stoichiometry of Li and Ca. The version presented here accurately predicts the observed dependence of D Li on seawater Li/Ca ratios. Our data demonstrate that minor element partitioning in calcifying organisms is partly mediated by biological processes even if the partitioning behavior of the calcifying organism is indistinguishable from that of inorganically precipitated calcium carbonate
    • 

    corecore