Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for *Emiliania huxleyi*

external carbonate system

Lena-Maria Holtz Dieter Wolf-Gladrow <u>Silke Thoms</u>

 $1,4,6^{12}CO_2$ and ${}^{13}CO_2$ diffuse independently 2a Permanent HCO₃⁻ uptake, H¹²CO₃⁻:H¹³CO₃⁻ ratio equals ratio in seawater 2b Induceable HCO3 uptake, H¹²CO3:H¹³CO3 ratio equals ratio in seawater 3,7,11 pH-regulating H⁺ fluxes 5 Energy(respiration)-dependent Ca2+/HCO3/H+ antiporter, transported H¹²CO₃⁻:H¹³CO₃⁻ ratio equals ratio in cytosol 8, 9 Independent $H^{12}CO_3^-$ and $H^{13}CO_3^-$ fluxes following concentration gradient 10 Slow CO₂ diffusion, ¹²CO₂ and ¹³CO₂ diffuse independently 12 Calcite precipitation, ¹²CO₃²⁻ and ¹³CO₃²⁻ fixation into PIC with same ratio as in CV 13 Photosynthetic CO₂ fixation, [RubisCO] (i.e. R_{max}^{Rub}) increases with light, RubisCO discriminates against ¹³CO₂ 14 At high respiration rates, transporter 5 is activated

15 When [CO₂] around RubisCO is low, HCO₃ uptake (2b) is upregulated

16 Respiration releases ¹²CO₂ and ¹³CO₂ into CS in the ratio POC was produced before

