122 research outputs found

    Observation of strongly enhanced photoluminescence from inverted cone-shaped silicon nanostuctures

    Get PDF
    Silicon nanowires (SiNWs) attached to a wafer substrate are converted to inversely tapered silicon nanocones (SiNCs). After excitation with visible light, individual SiNCs show a 200-fold enhanced integral band-to-band luminescence as compared to a straight SiNW reference. Furthermore, the reverse taper is responsible for multifold emission peaks in addition to the relatively broad near-infrared (NIR) luminescence spectrum. A thorough numerical mode analysis reveals that unlike a SiNW the inverted SiNC sustains a multitude of leaky whispering gallery modes. The modes are unique to this geometry and they are characterized by a relatively high quality factor (Q ~ 1300) and a low mode volume (0.2 < (λ/neff)3 < 4). In addition they show a vertical out coupling of the optically excited NIR luminescence with a numerical aperture as low as 0.22. Estimated Purcell factors Fp ∝ Q/Vm of these modes can explain the enhanced luminescence in individual emission peaks as compared to the SiNW reference. Investigating the relation between the SiNC geometry and the mode formation leads to simple design rules that permit to control the number and wavelength of the hosted modes and therefore the luminescent emission peaks

    Full length interleukin 33 aggravates radiation-induced skin reaction

    Get PDF
    The interleukin (IL)-1 family member IL-33 has been described as intracellular alarmin with broad roles in wound healing, skin inflammation but also autoimmunity. Its dichotomy between full length (fl) IL-33 and the mature (m) form of IL-33 and its release by necrosis is still not fully understood. Here, we compare functional consequences of both forms in the skin in vivo, and therefore generated two lines of transgenic mice which selectively overexpress mmIL-33 and flmIL-33 in basal keratinocytes. Transgene mRNA was expressed at high level in skin of both lines but not in organs due to the specific K14 promoter. We could demonstrate that transgenic overexpression of mmIL-33 in murine keratinocytes leads to a spontaneous skin inflammation as opposed to flmIL-33. K14-mmIL-33 mice synthesize and secrete high amounts of mmIL-33 along with massive cutaneous manifestations, like increased epidermis and dermis thickness, infiltration of mast cells in the epidermis and dermis layers and marked hyperkeratosis. Using skin inflammation models such as IL-23 administration, imiquimod treatment, or mechanical irritation did not lead to exacerbated inflammation in the K14-flmIL-33 strain. As radiation induces a strong dermatitis due to apoptosis and necrosis, we determined the effect of fractionated radiation (12 Gy, 4 times). In comparison to wild-type mice, an increase in ear thickness in flmIL-33 transgenic mice was observed 25 days after irradiation. Macroscopic examination showed more severe skin symptoms in irradiated ears compared to controls. In summary, secreted mmIL-33 itself has a potent capacity in skin inflammation whereas fl IL-33 is limited due to its intracellular retention. During tissue damage, fl IL-33 exacerbated radiation-induced skin reaction

    Differential virus restriction patterns of rhesus macaque and human APOBEC3A: Implications for lentivirus evolution

    Get PDF
    AbstractThe human apolipoprotein B mRNA editing enzyme catalytic peptide-like 3 (APOBEC3; A3) family of proteins (A3A-H) are known to restrict various retroviruses and retroelements, but the full complement of rhesus macaque A3 proteins remains unclear. We report the isolation and characterization of the hA3A homologue from rhesus macaques (rhA3A) and show that the rhesus macaque and human A3 genes are orthologous. RhA3A is expressed at high levels in activated CD4+ T cells, is widely expressed in macaque tissues, and is degraded in the presence of the human immunodeficiency virus (HIV-1) and simian–human immunodeficiency virus (SHIV) genomes. Our results indicate that rhA3A is a potent inhibitor of SHIVΔvif and to a lesser extent HIV-1Δvif. Unlike hA3A, rhA3A did not inhibit adeno-associated virus 2 (AAV-2) replication and L1 retrotransposition. These data suggest an evolutionary switch in primate A3A virus specificity and provide the first evidence that a primate A3A can inhibit lentivirus replication

    Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is a common behavioural disorder that affects not only children and adolescents but also adults; however, diagnosis of adult ADHD is difficult because patients seem to have reduced externalized behaviour. ADHD is a multifactorial disorder in which many genes, all with small effects, are thought to cause the disorder in the presence of unfavourable environmental conditions. Therefore, in this pilot study, we explored the expression profile of a list of previously established candidate genes in peripheral blood samples from adult ADHD subjects (n=108) and compared these results with those of healthy controls (n=35). We demonstrate that combining the gene expression levels of dopamine transporter (SLC6A3), dopamine D5 receptor, tryptophan hydroxylase-1, and SNAP25 as predictors in a regression model resulted in sensitivity and specificity of over 80% (ROC: max R 2=0.587, AUC=0.917, P<0.001, 95% CI: 0.900-0.985). In conclusion, the combination of these four genes could represent a potential method for estimating risk and could be of diagnostic value for ADHD. Nevertheless, further investigation in a larger independent population including different subtypes of ADHD (inattentive, hyperactive, or combined type) patients is required to obtain more specific sets of biomarkers for each subtype as well as to differentiate between child, adolescent, and adulthood form

    Uniparental disomy 7 in Silver—Russell syndrome and primordial growth retardation

    Get PDF
    Maternal uniparental disomy for the entire chromosome 7 has so far been reported in three patients with intrauterine and postnatal growth retardation. Two were detected because they were homozygous for a cystic fibrosis mutation for which only the mother was heterozygous, and one because he was homozygous for a rare COL1A2 mutation. We investigated 35 patients with either the Silver-Russell syndrome or primordial growth retardation and their parents with PCR markers to search for uniparental disomy 7. Four of 35 patients were found to have maternal disomy, including three with isodisomy and one with heterodisomy. The data confirm the hypothetical localization of a maternally imprinted gene (or more than one such gene) on chromosome 7. It is suggested to search for UPD 7 in families with an offspring with sporadic Silver-Russell syndrome or primordial growth retardatio

    On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3

    Get PDF
    Temperature-dependent dielectric permittivity of 0.94(Bi1/2Na1/2) TiO3-0.06BaTiO(3) (BNT-6BT) lead-free piezoceramics was studied to disentangle the existing unclear issues over the crystallographic aspects and phase stability of the system. Application of existing phenomenological relaxor models enabled the relaxor contribution to the entire dielectric permittivity spectra to be deconvoluted. The deconvoluted data in comparison with the temperature-dependent dielectric permittivity of a classical perovskite relaxor, La-modified lead zirconate titanate, clearly suggest that BNT-6BT belongs to the same relaxor category, which was also confirmed by a comparative study on the temperature-dependent polarization hysteresis loops of both materials. Based on these results, we propose that the low-temperature dielectric anomaly does not involve any phase transition such as ferroelectric-toantiferroelectric. Supported by transmission electron microscopy and X-ray diffraction experiments at ambient temperature, we propose that the commonly observed two dielectric anomalies are attributed to thermal evolution of ferroelectric polar nanoregions of R3c and P4bm symmetry, which coexist nearly throughout the entire temperature range and reversibly transform into each other with temperature.open1128
    corecore