22 research outputs found

    Chromatin Binding of c-REL and p65 Is Not Limiting for Macrophage IL12B Transcription During Immediate Suppression by Ovarian Carcinoma Ascites

    Get PDF
    Tumors frequently exploit homeostatic mechanisms that suppress expression of IL-12, a central mediator of inflammatory and anti-tumor responses. The p40 subunit of the IL-12 heterodimer, encoded by IL12B, is limiting for these functions. Ovarian carcinoma patients frequently produce ascites which exerts immunosuppression by means of soluble factors. The NFκB pathway is necessary for transcription of IL12B, which is not expressed in macrophages freshly isolated from ascites. This raises the possibility that ascites prevents IL12B expression by perturbing NFκB binding to chromatin. Here, we show that ascites-mediated suppression of IL12B induction by LPS plus IFNγ in primary human macrophages is rapid, and that suppression can be reversible after ascites withdrawal. Nuclear translocation of the NFκB transcription factors c-REL and p65 was strongly reduced by ascites. Surprisingly, however, their binding to the IL12B locus and to CXCL10, a second NFκB target gene, was unaltered, and the induction of CXCL10 transcription was not suppressed by ascites. These findings indicate that, despite its reduced nuclear translocation, NFκB function is not generally impaired by ascites, suggesting that ascites-borne signals target additional pathways to suppress IL12B induction. Consistent with these data, IL-10, a clinically relevant constituent of ascites and negative regulator of NFκB translocation, only partially recapitulated IL12B suppression by ascites. Finally, restoration of a defective IL-12 response by appropriate culture conditions was observed only in macrophages from a subset of donors, which may have important implications for the understanding of patient-specific immune responses

    Effects of Celecoxib and Ly117018 Combination on Human Breast Cancer Cells in Vitro

    No full text
    Activation and signalling of estrogen receptor (ER) and COX-2 represent two important pathways in breast cancer cell regulation. Activation of either pathway is associated with breast cancer cell proliferation and eventually malignant progression. Raloxifene analogue, Ly117018, a selective estrogen receptor modulator and celecoxib, a specific COX- 2 inhibitor have been shown to inhibit breast cancer cell proliferation when used alone in vitro and in vivo. In this study, the combined drug effects on hormone-dependent MCF-7 and hormone-independent MDA-MB-435 cells in vitro were evaluated. Cell proliferation assays excluded drug antagonism and revealed a moderate synergistic growth inhibitory activity of Ly117018 and celecoxib on both cell lines when combined in specific concentrations. Growth inhibition of either compound was not associated with cell cycle arrest. In MCF-7 cells, western blot analysis revealed a decreased phosphorylation of the AKT protein by either agent alone or in combination. In MDA-MB-435 cells, celecoxib alone induced an increase in AKT phosphorylation relative to total AKT protein; this effect was decreased in the presence of Ly117018. These results indicate that these two drugs are non-antagonistic; and when combined in specific concentrations, moderate synergistic antiproliferative activity of celecoxib and Ly117018 were observed in hormone-dependent MCF-7 and hormone- independent MDA-MB-435 cells associated with changes in cell cycle distribution and regulation of AKT protein and phosphorylation. These findings further support a central role of the ER- and COX-2 pathways in human breast cancer cells

    Isolation of native EVs from primary biofluids—Free‐flow electrophoresis as a novel approach to purify ascites‐derived EVs

    No full text
    Abstract Although extracellular vesicles (EVs) have been extensively characterized, efficient purification methods, especially from primary biofluids, remain challenging. Here we introduce free‐flow electrophoresis (FFE) as a novel approach for purifying EVs from primary biofluids, in particular from the peritoneal fluid (ascites) of ovarian cancer patients. FFE represents a versatile, fast, matrix‐free approach for separating different analytes with inherent differences in charge density and/or isoelectric point (pI). Using a series of buffered media with different pH values allowed us to collect 96 fractions of ascites samples. To characterize the composition of the individual fractions, we used state‐of‐the‐art methods such as nanoflow and imaging flow cytometry (nFCM and iFCM) in addition to classical approaches. Of note, tetraspanin‐positive events measured using nFCM were enriched in a small number of distinct fractions. This observation was corroborated by Western blot analysis and electron microscopy, demonstrating only minor contamination with soluble proteins and lipid particles. In addition, these gently purified EVs remain functional. Thus, FFE represents a new, efficient and fast method for separating native and highly purified EVs from complicated primary samples

    Prostacyclin Released by Cancer-Associated Fibroblasts Promotes Immunosuppressive and Pro-Metastatic Macrophage Polarization in the Ovarian Cancer Microenvironment

    No full text
    Metastasis of high-grade ovarian carcinoma (HGSC) is orchestrated by soluble mediators of the tumor microenvironment. Here, we have used transcriptomic profiling to identify lipid-mediated signaling pathways encompassing 41 ligand-synthesizing enzymes and 23 cognate receptors in tumor, immune and stroma cells from HGSC metastases and ascites. Due to its strong association with a poor clinical outcome, prostacyclin (PGI2) synthase (PTGIS) is of particular interest in this signaling network. PTGIS is highly expressed by cancer-associated fibroblasts (CAF), concomitant with elevated PGI2 synthesis, whereas tumor-associated macrophages (TAM) exhibit the highest expression of its surface receptor (PTGIR). PTGIR activation by PGI2 agonists triggered cAMP accumulation and induced a mixed-polarization macrophage phenotype with altered inflammatory gene expression, including CXCL10 and IL12A repression, as well as reduced phagocytic capability. Co-culture experiments provided further evidence for the interaction of CAF with macrophages via PGI2, as the effect of PGI2 agonists on phagocytosis was mitigated by cyclooxygenase inhibitors. Furthermore, conditioned medium from PGI2-agonist-treated TAM promoted tumor adhesion to mesothelial cells and migration in a PTGIR-dependent manner, and PTGIR activation induced the expression of metastasis-associated and pro-angiogenic genes. Taken together, our study identifies a PGI2/PTGIR-driven crosstalk between CAF, TAM and tumor cells, promoting immune suppression and a pro-metastatic environment

    Additional file 2: Supplemental Datasets S1-S10. of Interferon signaling in ascites-associated macrophages is linked to a favorable clinical outcome in a subgroup of ovarian carcinoma patients

    No full text
    Dataset S1: Complete RNA-Seq data. Dataset S2: EdgeR results. Dataset S3: Signature A expression data. Dataset S4: Signature B expression data. Dataset S5: Cluster I expression data. Dataset S6: Cluster II expression data. Dataset S7: Cluster III expression data. Dataset S8: Common cluster I / signature A genes. Dataset S9: Common cluster III / signature B genes. Dataset S10: PRECOG z-scores for signature A and B genes. (XLSX 6898 kb

    Additional file 3: Supplemental Figures S1-S8. of Interferon signaling in ascites-associated macrophages is linked to a favorable clinical outcome in a subgroup of ovarian carcinoma patients

    No full text
    Figure S1: Inverse association of PCOLCE2 expression with high-grade serous ovarian cancer survival (RFS). Figure S2: Hierarchial clustering of coexpressed high variance genes. Figure S3: Venn diagram showing the overlaps of the the upstream regulators gene sets identified in Fig. 3C. Figure S4: Subgroup-selective expression of signature genes. Figure S5: Association of signature A (top) and signature B (bottom) with ovarian cancer survival (OS). Figure S6: Association of the ECM remodeling-linked genes of signature A with high-grade serous ovarian cancer survival. Figure S7: Association of tumor-infiltrating host cells with high-grade serous ovarian cancer survival (OS). Figure S8: Expression of type I IFN genes in different cell types present in ovarian cancer ascites. (PDF 1015 kb

    Cell type‐selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment

    No full text
    The peritoneal fluid of ovarian carcinoma patients promotes cancer cell invasion and metastatic spread with lysophosphatidic acid (LPA) as a potentially crucial mediator. However, the origin of LPA in ascites and the clinical relevance of individual LPA species have not been addressed. Here, we show that the levels of multiple acyl‐LPA species are strongly elevated in ascites versus plasma and are associated with short relapse‐free survival. Data derived from transcriptome and secretome analyses of primary ascite‐derived cells indicate that (a) the major route of LPA synthesis is the consecutive action of a secretory phospholipase A2 (PLA2) and autotaxin, (b) that the components of this pathway are coordinately upregulated in ascites, and (c) that CD163+CD206+ tumor‐associated macrophages play an essential role as main producers of PLA2G7 and autotaxin. The latter conclusion is consistent with mass spectrometry‐based metabolomic analyses of conditioned medium from ascites cells, which showed that tumor‐associated macrophages, but not tumor cells, are able to produce 20:4 acyl‐LPA in lipid‐free medium. Furthermore, our transcriptomic data revealed that LPA receptor (LPAR) genes are expressed in a clearly cell type‐selective manner: While tumor cells express predominantly LPAR1‐3, macrophages and T cells also express LPAR5 and LPAR6 at high levels, pointing to cell type‐selective LPA signaling pathways. RNA profiling identified cytokines linked to cell motility and migration as the most conspicuous class of LPA‐induced genes in macrophages, suggesting that LPA exerts protumorigenic properties at least in part via the tumor secretome
    corecore