13 research outputs found

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Slow-freezing versus vitrification for human ovarian tissue cryopreservation

    No full text
    Klocke S, Buendgen N, Koester F, Eichenlaub-Ritter U, Griesinger G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Archives of Gynecology and Obstetrics. 2015;291(2):419-426.Ovarian tissue can be cryopreserved prior to chemotherapy using either the slow-freezing or the vitrification method; however, the data on the equality of the procedures are still conflicting. In this study, a comparison of the cryo-damage of human ovarian tissue induced by either vitrification or slow-freezing was performed. Ovarian tissue from 23 pre-menopausal patients was cryopreserved with either slow-freezing or vitrification. After thawing/warming, the tissue was histologically and immunohistochemically analyzed and cultured in vitro. During tissue culture the estradiol release was assessed. No significant difference was found in the proportion of high-quality follicles after thawing/warming in the slow-freezing and vitrification group, respectively (72.7 versus 66.7 %, p = 0.733). Estradiol secretion by the ovarian tissue was similar between groups during 18 days in vitro culture (area-under-the-curve 5,411 versus 13,102, p = 0.11). Addition of Sphingosine-1-Phosphate or Activin A to the culture medium did not alter estradiol release in both groups. The proportion of Activated Caspase-3 or 'Proliferating-Cell-Nuclear-Antigen' positive follicles at the end of the culture period was similar between slow-freezing and vitrification. Slow-freezing and vitrification result in similar morphological integrity after cryopreservation, a similar estradiol release in culture, and similar rates of follicular proliferation and apoptosis after culture

    Disrupting Y-Box-Binding Protein 1 Function Using OSU-03012 Prevents Endometriosis Progression in In Vitro and In Vivo Models

    No full text
    The objective of the present study was to test the ability of OSU-03012 (2-amino-N-[4-[5-phenanthren-2-yl-3-(trifluoromethyl)pyrazol-1-yl]phenyl]acetamide), a novel and potent celecoxib-derivative, to impair endometriosis progression in in vitro and in vivo models based on its ability to indirectly block Y-box-binding protein 1 (YB-1) function. 12Z human endometriotic epithelial cells and sexually mature female C57BL/6J mice were treated with OSU-03012. Cellular proliferation was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid assay. Expression of YB-1 and phosphorylated YB-1 in 12Z cells and endometriotic lesions was evaluated by Western blotting and immunohistochemistry (IHC). The IHC for proliferating cell nuclear antigen was performed. OSU-03012 treatment resulted in decreased YB-1 and its phosphorylated form in both in vitro and in vivo models. Endometriotic lesion size was significantly reduced in OSU-03012-treated mice (27.6 +/- 4.0 mm(3)) compared to those from the control group (50.5 +/- 6.9 mm(3), P < .0001). A significant reduction in endometriotic epithelial cell proliferation was observed in endometriotic lesions exposed to OSU-03012 treatment (P = .0346). In conclusion, targeting YB-1 via OSU-03012 showed a potent antiproliferative effect on endometriotic epithelial cells in vitro and in a mouse model of disease
    corecore