55 research outputs found
Quasi-Isotropization of the Inhomogeneous Mixmaster Universe Induced by an Inflationary Process
We derive a ``generic'' inhomogeneous ``bridge'' solution for a cosmological
model in the presence of a real self-interacting scalar field. This solution
connects a Kasner-like regime to an inflationary stage of evolution and
therefore provides a dynamical mechanism for the quasi-isotropization of the
universe. In the framework of a standard Arnowitt-Deser-Misner Hamiltonian
formulation of the dynamics and by adopting Misner-Chitr\`e-like variables, we
integrate the Einstein-Hamilton-Jacobi equation corresponding to a ``generic''
inhomogeneous cosmological model whose evolution is influenced by the coupling
with a bosonic field, expected to be responsible for a spontaneous symmetry
breaking configuration. The dependence of the detailed evolution of the
universe on the initial conditions is then appropriately characterized.Comment: 17 pages, no figure, to appear on PR
Solar Wakes of Dark Matter Flows
We analyze the effect of the Sun's gravitational field on a flow of cold dark
matter (CDM) through the solar system in the limit where the velocity
dispersion of the flow vanishes. The exact density and velocity distributions
are derived in the case where the Sun is a point mass. The results are extended
to the more realistic case where the Sun has a finite size spherically
symmetric mass distribution. We find that regions of infinite density, called
caustics, appear. One such region is a line caustic on the axis of symmetry,
downstream from the Sun, where the flow trajectories cross. Another is a
cone-shaped caustic surface near the trajectories of maximum scattering angle.
The trajectories forming the conical caustic pass through the Sun's interior
and probe the solar mass distribution, raising the possibility that the solar
mass distribution may some day be measured by a dark matter detector on Earth.
We generalize our results to the case of flows with continuous velocity
distributions, such as that predicted by the isothermal model of the Milky Way
halo.Comment: 30 pages, 8 figure
A perspective on the landscape problem
I discuss the historical roots of the landscape problem and propose criteria
for its successful resolution. This provides a perspective to evaluate the
possibility to solve it in several of the speculative cosmological scenarios
under study including eternal inflation, cosmological natural selection and
cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics
titled: Forty Years Of String Theory: Reflecting On the Foundations. 31
pages, no figure
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Proton propagation in nuclei studied in the (e,e’p) reaction
Proton propagation in nuclei was studied using the (e,e’p) reaction in the quasifree region. The coincidence (e,e’p) cross sections were measured at an electron angle of 50.4° and proton angles of 50.1°, 58.2°, 67.9°, and 72.9° for 12C, 27Al, 58Ni, and 181Ta targets at a beam energy of 779.5 MeV. The average outgoing proton energy was 180 MeV. The ratio of the (e,e’p) yield to the simultaneously measured (e,e’) yield was compared to that calculated in the plane-wave impulse approximation and an experimental transmission defined. These experimental transmissions are considerably larger (a factor of ∼2 for 181Ta) than those one would calculate from the free N-N cross sections folded into the nuclear density distribution. A new calculation that includes medium effects (N-N correlations, density dependence of the N-N cross sections and Pauli suppression) accounts for this increase
Dynamics of the Universe with global rotation
We analyze dynamics of the FRW models with global rotation in terms of
dynamical system methods. We reduce dynamics of these models to the FRW models
with some fictitious fluid which scales like radiation matter. This fluid
mimics dynamically effects of global rotation. The significance of the global
rotation of the Universe for the resolution of the acceleration and horizon
problems in cosmology is investigated. It is found that dynamics of the
Universe can be reduced to the two-dimensional Hamiltonian dynamical system.
Then the construction of the Hamiltonian allows for full classification of
evolution paths. On the phase portraits we find the domains of cosmic
acceleration for the globally rotating universe as well as the trajectories for
which the horizon problem is solved. We show that the FRW models with global
rotation are structurally stable. This proves that the universe acceleration is
due to the global rotation. It is also shown how global rotation gives a
natural explanation of the empirical relation between angular momentum for
clusters and superclusters of galaxies. The relation is obtained
as a consequence of self similarity invariance of the dynamics of the FRW model
with global rotation. In derivation of this relation we use the Lie group of
symmetry analysis of differential equation.Comment: Revtex4, 22 pages, 5 figure
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
Some remarks on the angular momenta of galaxies, their clusters and superclusters
We discuss the relation between angular momenta and masses of galaxy
structures base on the Li model of the universe with global rotation. In our
previous paper (God{\l}owski et al 2002) it was shown that the model predicts
the presence of a minimum in this relation. In the present paper we discuss
observational evidence allowing us to verify this relation. We find null
angular momentum J=0 for the masses corresponding to mass of galaxy grups and
non-vanishing angular momenta for other galactic structures. We check these
theoretical predictions analysing Tully's galaxy grups. The existing data
comparing alignment in different galactic structure are consistent with
obtained theoretical relation if we interpret the groving alignment as
the galactic increasing angular momenta in the galactic structure.Comment: 20 pages 1 figure. GRG accepte
- …