3 research outputs found

    Charge transport in self-assembled semiconducting organic layers : role of dynamic and static disorder

    No full text
    Partial disorder is an inherent property of self-assembled organic semiconductors that complicates their rational design, because electronic structure, self-assembling properties, and stability all have to be accounted for simultaneously. Therefore, the understanding of charge transport mechanisms in these systems is still in its infancy. A theoretical study of charge transport in organic semiconductors was performed on self-assembled layers of [1]benzothieno[3,2-b]benzothiophene functionalized with alkyl side chains. Analysis showed that semiclassical dynamics misses static (on time scales of charge transport) disorder while the solution of the master equation combined with the high-temperature limit Marcus theory for charge transfer rates does not take into account molecular dynamic modes relaxing on a time scale of charge hopping. A comparison between predictions based on a perfectly ordered and a realistic crystal structure reveals the strong influence of static and dynamic disorder. The advantage of two-dimensional charge transporting materials over one-dimensional ones is clearly shown. The Marcus theory-based prediction of 0.1 cm(2) V-1 s(-1) is in good agreement with our FET mobility of 0.22 cm(2) V-1 s(-1), which is an order of magnitude lower than that reported in the literature [Ebata, H.; et al. J. Ant. Chem. Soc. 2007, 129, 15732]

    Electrostatic modification of novel materials

    No full text
    Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.Kavli Institute of NanoscienceApplied Science

    Perfectly Regioregular Electroactive Polyolefins: Impact of Inter-Chromophore Distance on PLED EQE

    No full text
    corecore