597 research outputs found

    Limits on Replenishment of the Resting CD4+ T Cell Reservoir for HIV in Patients on HAART

    Get PDF
    Whereas cells productively infected with human immunodeficiency virus type 1 (HIV-1) decay rapidly in the setting of highly active antiretroviral therapy (HAART), latently infected resting CD4+ T cells decay very slowly, persisting for the lifetime of the patient and thus forming a stable reservoir for HIV-1. It has been suggested that the stability of the latent reservoir is due to low-level viral replication that continuously replenishes the reservoir despite HAART. Here, we offer the first quantitative study to our knowledge of inflow of newly infected cells into the latent reservoir due to viral replication in the setting of HAART. We make use of a previous observation that in some patients on HAART, the residual viremia is dominated by a predominant plasma clone (PPC) of HIV-1 not found in the latent reservoir. The unique sequence of the PPC serves as a functional label for new entries into the reservoir. We employ a simple mathematical model for the dynamics of the latent reservoir to constrain the inflow rate to between 0 and as few as 70 cells per day. The magnitude of the maximum daily inflow rate is small compared to the size of the latent reservoir, and therefore any inflow that occurs in patients on HAART is unlikely to significantly influence the decay rate of the reservoir. These results suggest that the stability of the latent reservoir is unlikely to arise from ongoing replication during HAART. Thus, intensification of standard HAART regimens should have minimal effects on the decay of the latent reservoir

    Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of highly active antiretroviral therapy (HAART), plasma levels of human immunodeficiency type-1 (HIV-1) rapidly decay to below the limit of detection of standard clinical assays. However, reactivation of remaining latently infected memory CD4<sup>+ </sup>T cells is a source of continued virus production, forcing patients to remain on HAART despite clinically undetectable viral loads. Unfortunately, the latent reservoir decays slowly, with a half-life of up to 44 months, making it the major known obstacle to the eradication of HIV-1 infection. However, the mechanism underlying the long half-life of the latent reservoir is unknown. The most likely potential mechanisms are low-level viral replication and the intrinsic stability of latently infected cells.</p> <p>Methods</p> <p>Here we use a mathematical model of T cell dynamics in the setting of HIV-1 infection to probe the decay characteristics of the latent reservoir upon initiation of HAART. We compare the behavior of this model to patient derived data in order to gain insight into the role of low-level viral replication in the setting of HAART.</p> <p>Results</p> <p>By comparing the behavior of our model to patient derived data, we find that the viral dynamics observed in patients on HAART could be consistent with low-level viral replication but that this replication would not significantly affect the decay rate of the latent reservoir. Rather than low-level replication, the intrinsic stability of latently infected cells and the rate at which they are reactivated primarily determine the observed reservoir decay rate according to the predictions of our model.</p> <p>Conclusion</p> <p>The intrinsic stability of the latent reservoir has important implications for efforts to eradicate HIV-1 infection and suggests that intensified HAART would not accelerate the decay of the latent reservoir.</p

    Organization of Cellular Receptors into a Nanoscale Junction during HIV-1 Adhesion

    Get PDF
    The fusion of the human immunodeficiency virus type 1 (HIV-1) with its host cell is the target for new antiretroviral therapies. Viral particles interact with the flexible plasma membrane via viral surface protein gp120 which binds its primary cellular receptor CD4 and subsequently the coreceptor CCR5. However, whether and how these receptors become organized at the adhesive junction between cell and virion are unknown. Here, stochastic modeling predicts that, regarding binding to gp120, cellular receptors CD4 and CCR5 form an organized, ring-like, nanoscale structure beneath the virion, which locally deforms the plasma membrane. This organized adhesive junction between cell and virion, which we name the viral junction, is reminiscent of the well-characterized immunological synapse, albeit at much smaller length scales. The formation of an organized viral junction under multiple physiopathologically relevant conditions may represent a novel intermediate step in productive infection

    Maintenance of viral suppression in HIV-1–infected HLA-B*57+ elite suppressors despite CTL escape mutations

    Get PDF
    Rare human immunodeficiency virus 1–infected individuals, termed elite suppressors (ES), maintain plasma virus levels of <50 copies/ml and normal CD4 counts without therapy. The major histocompatibility complex class I allele group human histocompatibility leukocyte antigen (HLA)-B*57 is overrepresented in this population. Mutations in HLA-B*57–restricted epitopes have been observed in ES, but their significance has remained unclear. Here we investigate the extent and impact of cytotoxic T lymphocyte (CTL) escape mutations in HLA-B*57+ ES. We provide the first direct evidence that most ES experience chronic low level viremia. Sequencing revealed a striking discordance between the genotypes of plasma virus and archived provirus in resting CD4+ T cells. Mutations in HLA-B*57–restricted Gag epitopes were present in all viruses from plasma but were rare in proviruses, suggesting powerful selective pressure acting at these epitopes. Surprisingly, strong CD8+ T cell interferon-γ responses were detected against some mutant epitopes found in plasma virus, suggesting the development of de novo responses to viral variants. In some individuals, relative CD8+ T cell interleukin-2 responses showed better correlation with the selection observed in vivo. Thus, analysis of low level viremia reveals an unexpectedly high level of CTL escape mutations reflecting selective pressure acting at HLA-B*57–restricted epitopes in ES. Continued viral suppression probably reflects CTL responses against unmutated epitopes and residual or de novo responses against epitopes with escape mutations

    Nuclear Retention of Multiply Spliced HIV-1 RNA in Resting CD4(+) T Cells

    Get PDF
    HIV-1 latency in resting CD4(+) T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART). We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4(+) T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS) HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4(+) T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4(+) T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB) was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4(+) T cells. Overexpression of PTB in resting CD4(+) T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4(+) T cells. Virus culture experiments showed that overexpression of PTB in resting CD4(+) T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications

    Real-Time Predictions of Reservoir Size and Rebound Time during Antiretroviral Therapy Interruption Trials for HIV

    Get PDF
    Monitoring the efficacy of novel reservoir-reducing treatments for HIV is challenging. The limited ability to sample and quantify latent infection means that supervised antiretroviral therapy (ART) interruption studies are generally required. Here we introduce a set of mathematical and statistical modeling tools to aid in the design and interpretation of ART-interruption trials. We show how the likely size of the remaining reservoir can be updated in real-time as patients continue off treatment, by combining the output of laboratory assays with insights from models of reservoir dynamics and rebound. We design an optimal schedule for viral load sampling during interruption, whereby the frequency of follow-up can be decreased as patients continue off ART without rebound. While this scheme can minimize costs when the chance of rebound between visits is low, we find that the reservoir will be almost completely reseeded before rebound is detected unless sampling occurs at least every two weeks and the most sensitive viral load assays are used. We use simulated data to predict the clinical trial size needed to estimate treatment effects in the face of highly variable patient outcomes and imperfect reservoir assays. Our findings suggest that large numbers of patients—between 40 and 150—will be necessary to reliably estimate the reservoir-reducing potential of a new therapy and to compare this across interventions. As an example, we apply these methods to the two “Boston patients”, recipients of allogeneic hematopoietic stem cell transplants who experienced large reductions in latent infection and underwent ART-interruption. We argue that the timing of viral rebound was not particularly surprising given the information available before treatment cessation. Additionally, we show how other clinical data can be used to estimate the relative contribution that remaining HIV+ cells in the recipient versus newly infected cells from the donor made to the residual reservoir that eventually caused rebound. Together, these tools will aid HIV researchers in the evaluating new potentially-curative strategies that target the latent reservoir

    Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Get PDF
    Elite controllers or suppressors (ES) are HIV-1 infected patients who maintain viral loads of < 50 copies/ml without antiretroviral therapy. CD8+ T cells are thought to play a key role in the control of viral replication and exert selective pressure on gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host
    corecore