12 research outputs found

    SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder.

    Get PDF
    N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5a-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation

    Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying Joubert syndrome

    No full text
    Joubert Syndrome (JS) is an inherited ciliopathy associated with mutations in genes essential in primary cilium function. Whole exome sequencing in a multiplex consanguineous family from India revealed a KIAA0556 homozygous single base pair deletion mutation (c.4420del; p.Met1474Cysfs*11). Knockdown of the gene in zebrafish resulted in a ciliopathy phenotype, rescued by co-injection of wildtype cDNA. Affected siblings present a mild and classical form of Joubert syndrome allowing for further delineation of the JS associated genotypic spectrum

    Mutations in CSPP1 lead to classical Joubert syndrome

    Get PDF
    Contains fulltext : 137504.pdf (publisher's version ) (Open Access)Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia

    Exome sequencing can improve diagnosis and alter patient management

    No full text
    Item does not contain fulltextThe translation of "next-generation" sequencing directly to the clinic is still being assessed but has the potential for genetic diseases to reduce costs, advance accuracy, and point to unsuspected yet treatable conditions. To study its capability in the clinic, we performed whole-exome sequencing in 118 probands with a diagnosis of a pediatric-onset neurodevelopmental disease in which most known causes had been excluded. Twenty-two genes not previously identified as disease-causing were identified in this study (19% of cohort), further establishing exome sequencing as a useful tool for gene discovery. New genes identified included EXOC8 in Joubert syndrome and GFM2 in a patient with microcephaly, simplified gyral pattern, and insulin-dependent diabetes. Exome sequencing uncovered 10 probands (8% of cohort) with mutations in genes known to cause a disease different from the initial diagnosis. Upon further medical evaluation, these mutations were found to account for each proband's disease, leading to a change in diagnosis, some of which led to changes in patient management. Our data provide proof of principle that genomic strategies are useful in clarifying diagnosis in a proportion of patients with neurodevelopmental disorders
    corecore