6 research outputs found

    Meio-ambiente, interações entre Trypanosoma cruzi e seu hospedeiro e saúde humana

    Get PDF
    Uma rede epidemiológica envolvendo o Trypanosoma cruzi foi discutida nos níveis ambientais e de interações moleculares nos hospedeiros que habitam em 19 diferentes ecossistemas. O protozoário tem uma enorme plasticidade controlada geneticamente que confere sua adaptação a cerca de quarenta espécies de triatomíneos e mais de mil espécies de mamíferos. Essas infecções estão profundamente embutidas em inúmeros ecótopos, onde elas estão inacessíveis aos métodos de controle utilizados. Muito mais estudos de campo e de laboratório são necessários à obtenção de dados e informação pertinentes ao controle e prevenção das infecções pelo Tr. cruzi e as várias manifestações da doença. Ênfase deve ser dada àquelas interações que ocorrem nos níveis celulares e ambientais que se poderiam tomar como alvos seletivos para prevenção da doença. Novas tecnologias para mobilização social devem ser disponibilizadas para os que trabalham pela justiça e pela igualdade, mediante informação para a promoção da saúde. Um programa direcionado de educação de massa pode prover informação e comunicação necessárias para proteger os habitantes atualmente expostos ao risco de contrair as infecções pelo Tr. cruzi.An epidemiological chain involving Trypanosoma cruzi is discussed at the environmental level, and in terms of fine molecular interactions in invertebrate and vertebrate hosts dwelling in different ecosystems. This protozoan has a complex, genetically controlled plasticity, which confers adaptation to approximately 40 blood-sucking triatomine species and to over 1,000 mammalian species, fulfilling diverse metabolic requirements in its complex life-cycle. The Tr. cruzi infections are deeply embedded in countless ecotypes, where they are difficult to defeat using the control methods that are currently available. Many more field and laboratory studies are required to obtain data and information that may be used for the control and prevention of Tr. cruzi infections and their various disease manifestations. Emphasis should be placed on those sensitive interactions at cellular and environmental levels that could become selected targets for disease prevention. In the short term, new technologies for social mobilization should be used by people and organizations working for justice and equality through health information and promotion. A mass media directed program could deliver education, information and communication to protect the inhabitants at risk of contracting Tr. cruzi infections

    Involvement of regional lymph nodes after penetration of Schistosoma mansoni cercariae in naive and infected mice

    Full text link
    The parotid lymph nodes of naive and previously infected Balb/c mice were studied after, respectively, infection and re-infection with cercariae of Schistosoma mansoni via the ears. Schistosomula were able to pass through the lymph node by following the lymph flow or by penetrating the veins of the medullary cords. The number of nodal mast cells was higher from day 2 to 6 of primary infection; and from day 5 to 11 of re-infection. The amount of degranulating mast cells was significantly higher at day 4 of infection and at day 1 of re-infection. Eosinophils characterized the nodal inflammatory processes observed after day 5 in both primarily-infected and re-infected mice. However, only in the latter the eosinophils were able to adhere to the larval surface. In primarily-infected mice, no intranodal larva presented signs of degeneration. In contrast, in re-infected animals, some degenerating larvae were found inside eosinophilic infiltrates. The eosinophils reached the nodal tissue by migrating through the high endothelial venules and their collecting veins

    The Thermophilic, Homohexameric Aminopeptidase of Borrelia burgdorferi Is a Member of the M29 Family of Metallopeptidases

    No full text
    Proteases are implicated in several aspects of the physiology of microorganisms, as well as in host-pathogen interactions. Aminopeptidases are also emerging as novel drug targets in infectious agents. In this study, we have characterized an aminopeptidase from the spirochete Borrelia burgdorferi, the causative agent of Lyme disease. The aminopeptidolytic activity was identified in cell extracts from B. burgdorferi by using the substrate leucine-7-amido-4-methylcoumarin. A protein displaying this activity was purified from B. burgdorferi by a two-step chromatographic procedure, yielding a ∼300-kDa homo-oligomeric enzyme formed by monomers of ∼50 kDa. Gel enzymography experiments showed that enzymatic activity depends on the oligomeric structure of the protease but does not involve interchain disulfide bonds. The enzyme was identified by peptide mass fingerprinting as the putative aminopeptidase II of B. burgdorferi, encoded by the gene BB0069. It shares significant identity to members of the M29/T family of metallopeptidase, is sensitive to bestatin, has a neutral pH optimum, and displays maximal activity at 60°C. Its activity is 1.75-fold higher at the temperature of the mammalian host than at that of the insect host of the pathogen. The activity of this thermophilic aminopeptidase of B. burgdorferi (TAP(Bb)) depends on Zn(2+), and temperatures over 70°C promoted its inactivation through a transition from the hexameric state to the monomeric state. Since B. burgdorferi is deficient in pathways for amino acid synthesis, TAP(Bb) could play a role in supplying required amino acids. Alternatively, the enzyme could be involved in peptide and/or protein processing

    Environment, interactions between Trypanosoma cruzi and its host, and health Meio-ambiente, interações entre Trypanosoma cruzi e seu hospedeiro e saúde humana

    No full text
    An epidemiological chain involving Trypanosoma cruzi is discussed at the environmental level, and in terms of fine molecular interactions in invertebrate and vertebrate hosts dwelling in different ecosystems. This protozoan has a complex, genetically controlled plasticity, which confers adaptation to approximately 40 blood-sucking triatomine species and to over 1,000 mammalian species, fulfilling diverse metabolic requirements in its complex life-cycle. The Tr. cruzi infections are deeply embedded in countless ecotypes, where they are difficult to defeat using the control methods that are currently available. Many more field and laboratory studies are required to obtain data and information that may be used for the control and prevention of Tr. cruzi infections and their various disease manifestations. Emphasis should be placed on those sensitive interactions at cellular and environmental levels that could become selected targets for disease prevention. In the short term, new technologies for social mobilization should be used by people and organizations working for justice and equality through health information and promotion. A mass media directed program could deliver education, information and communication to protect the inhabitants at risk of contracting Tr. cruzi infections.<br>Uma rede epidemiológica envolvendo o Trypanosoma cruzi foi discutida nos níveis ambientais e de interações moleculares nos hospedeiros que habitam em 19 diferentes ecossistemas. O protozoário tem uma enorme plasticidade controlada geneticamente que confere sua adaptação a cerca de quarenta espécies de triatomíneos e mais de mil espécies de mamíferos. Essas infecções estão profundamente embutidas em inúmeros ecótopos, onde elas estão inacessíveis aos métodos de controle utilizados. Muito mais estudos de campo e de laboratório são necessários à obtenção de dados e informação pertinentes ao controle e prevenção das infecções pelo Tr. cruzi e as várias manifestações da doença. Ênfase deve ser dada àquelas interações que ocorrem nos níveis celulares e ambientais que se poderiam tomar como alvos seletivos para prevenção da doença. Novas tecnologias para mobilização social devem ser disponibilizadas para os que trabalham pela justiça e pela igualdade, mediante informação para a promoção da saúde. Um programa direcionado de educação de massa pode prover informação e comunicação necessárias para proteger os habitantes atualmente expostos ao risco de contrair as infecções pelo Tr. cruzi
    corecore