1,452 research outputs found

    Confined granular packings: structure, stress, and forces

    Full text link
    The structure and stresses of static granular packs in cylindrical containers are studied using large-scale discrete element molecular dynamics simulations in three dimensions. We generate packings by both pouring and sedimentation and examine how the final state depends on the method of construction. The vertical stress becomes depth-independent for deep piles and we compare these stress depth-profiles to the classical Janssen theory. The majority of the tangential forces for particle-wall contacts are found to be close to the Coulomb failure criterion, in agreement with the theory of Janssen, while particle-particle contacts in the bulk are far from the Coulomb criterion. In addition, we show that a linear hydrostatic-like region at the top of the packings unexplained by the Janssen theory arises because most of the particle-wall tangential forces in this region are far from the Coulomb yield criterion. The distributions of particle-particle and particle-wall contact forces P(f)P(f) exhibit exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references, fixed typo

    Reply to "Comment on `Jamming at zero temperature and zero applied stress: The epitome of disorder' "

    Full text link
    We answer the questions raised by Donev, Torquato, Stillinger, and Connelly in their "Comment on "Jamming at zero temperature and zero applied stress: The epitome of disorder.' " We emphasize that we follow a fundamentally different approach than they have done to reinterpret random close packing in terms of the "maximally random jammed" framework. We define the "maximally random jammed packing fraction" to be where the largest number of initial states, chosen completely randomly, have relaxed final states at the jamming threshold in the thermodynamic limit. Thus, we focus on an ensemble of states at the jamming threshold, while DTSC are interested in determining the amount of order and degree of jamming for a particular configuration. We also argue that soft-particle systems are as "clean" as those using hard spheres for studying jammed packings and point out the benefits of using soft potentials

    Rheology and Contact Lifetime Distribution in Dense Granular Flows

    Full text link
    We study the rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular flows of non-cohesive particles down an inclined plane using large-scale, three dimensional, granular dynamics simulations. Rather than observing a large number of long-lived contacts as might be expected for dense flows, brief binary collisions predominate. In the hard particle limit, the rheology conforms to Bagnold scaling, where the shear stress is quadratic in the strain rate. As the particles are made softer, however, we find significant deviations from Bagnold rheology; the material flows more like a viscous fluid. We attribute this change in the collective rheology of the material to subtle changes in the contact lifetime distribution involving the increasing lifetime and number of the long-lived contacts in the softer particle systems.Comment: 4 page

    Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic

    Get PDF
    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates rr and initial packing fractions followed by compression and decompression in small steps to reach packing fractions ϕJ\phi_J at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to ϕJ\phi_J. We find that amorphous, isostatic packings exist over a finite range of packing fractions from ϕminϕJϕmax\phi_{\rm min} \le \phi_J \le \phi_{\rm max} in the large-system limit, with ϕmax0.853\phi_{\rm max} \approx 0.853. In agreement with previous calculations, we obtain ϕmin0.84\phi_{\rm min} \approx 0.84 for r>rr > r^*, where rr^* is the rate above which ϕJ\phi_J is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, bond orientational order, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered, whereas bond-orientational and compositional order increase with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies of the static packings to understand the extent to which the mechanical properties of amorphous, isostatic packings are different from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.Comment: 11 pages, 15 figure

    Granular flow down a rough inclined plane: transition between thin and thick piles

    Full text link
    The rheology of granular particles in an inclined plane geometry is studied using molecular dynamics simulations. The flow--no-flow boundary is determined for piles of varying heights over a range of inclination angles θ\theta. Three angles determine the phase diagram: θr\theta_{r}, the angle of repose, is the angle at which a flowing system comes to rest; θm\theta_{m}, the maximum angle of stability, is the inclination required to induce flow in a static system; and θmax\theta_{max} is the maximum angle for which stable, steady state flow is observed. In the stable flow region θr<θ<θmax\theta_{r}<\theta<\theta_{max}, three flow regimes can be distinguished that depend on how close θ\theta is to θr\theta_{r}: i) θ>>θr\theta>>\theta_{r}: Bagnold rheology, characterized by a mean particle velocity vxv_{x} in the direction of flow that scales as vxh3/2v_{x}\propto h^{3/2}, for a pile of height hh, ii) θθr\theta\gtrsim\theta_{r}: the slow flow regime, characterized by a linear velocity profile with depth, and iii) θθr\theta\approx\theta_{r}: avalanche flow characterized by a slow underlying creep motion combined with occasional free surface events and large energy fluctuations. We also probe the physics of the initiation and cessation of flow. The results are compared to several recent experimental studies on chute flows and suggest that differences between measured velocity profiles in these experiments may simply be a consequence of how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid

    Geometry of Frictionless and Frictional Sphere Packings

    Get PDF
    We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard-spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from z=6z=6 as the friction coefficient μ\mu between two particles is increased.Comment: 6 pages, 9 figures, submitted to Phys. Rev.
    corecore