1,748 research outputs found

    Expansive actions on uniform spaces and surjunctive maps

    Full text link
    We present a uniform version of a result of M. Gromov on the surjunctivity of maps commuting with expansive group actions and discuss several applications. We prove in particular that for any group Γ\Gamma and any field \K, the space of Γ\Gamma-marked groups GG such that the group algebra \K[G] is stably finite is compact.Comment: 21 page

    Modified Regge calculus as an explanation of dark energy

    Full text link
    Using Regge calculus, we construct a Regge differential equation for the time evolution of the scale factor a(t)a(t) in the Einstein-de Sitter cosmology model (EdS). We propose two modifications to the Regge calculus approach: 1) we allow the graphical links on spatial hypersurfaces to be large, as in direct particle interaction when the interacting particles reside in different galaxies, and 2) we assume luminosity distance DLD_L is related to graphical proper distance DpD_p by the equation DL=(1+z)DpDpD_L = (1+z)\sqrt{\overrightarrow{D_p}\cdot \overrightarrow{D_p}}, where the inner product can differ from its usual trivial form. The modified Regge calculus model (MORC), EdS and Λ\LambdaCDM are compared using the data from the Union2 Compilation, i.e., distance moduli and redshifts for type Ia supernovae. We find that a best fit line through log(DLGpc)\displaystyle \log{(\frac{D_L}{Gpc})} versus logz\log{z} gives a correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit Λ\LambdaCDM gives SSE = 1.79 using HoH_o = 69.2 km/s/Mpc, ΩM\Omega_{M} = 0.29 and ΩΛ\Omega_{\Lambda} = 0.71. The best fit EdS gives SSE = 2.68 using HoH_o = 60.9 km/s/Mpc. The best fit MORC gives SSE = 1.77 and HoH_o = 73.9 km/s/Mpc using R=A1R = A^{-1} = 8.38 Gcy and m=1.71×1052m = 1.71\times 10^{52} kg, where RR is the current graphical proper distance between nodes, A1A^{-1} is the scaling factor from our non-trival inner product, and mm is the nodal mass. Thus, MORC improves EdS as well as Λ\LambdaCDM in accounting for distance moduli and redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e., there is no dark energy and the universe is always decelerating.Comment: 15 pages text, 6 figures. Revised as accepted for publication in Class. Quant. Gra

    Answering Mermin's Challenge with Conservation per No Preferred Reference Frame

    Get PDF
    In 1981, Mermin published a now famous paper titled, "Bringing home the atomic world: Quantum mysteries for anybody" that Feynman called, "One of the most beautiful papers in physics that I know." Therein, he presented the "Mermin device" that illustrates the conundrum of quantum entanglement per the Bell spin states for the "general reader." He then challenged the "physicist reader" to explain the way the device works "in terms meaningful to a general reader struggling with the dilemma raised by the device." Herein, we show how "conservation per no preferred reference frame (NPRF)" answers that challenge. In short, the explicit conservation that obtains for Alice and Bob's Stern-Gerlach spin measurement outcomes in the same reference frame holds only on average in different reference frames, not on a trial-by-trial basis. This conservation is SO(3) invariant in the relevant symmetry plane in real space per the SU(2) invariance of its corresponding Bell spin state in Hilbert space. Since NPRF is also responsible for the postulates of special relativity, and therefore its counterintuitive aspects of time dilation and length contraction, we see that the symmetry group relating non-relativistic quantum mechanics and special relativity via their "mysteries" is the restricted Lorentz group.Comment: 18 pages, 9 figures. This version as revised and resubmitted to Scientific Report

    Representation theory of wreath products of finite groups.

    Get PDF
    This is an exposition on the representation theory of wreath products of finite groups, with many examples worked out

    Exponential beams of electromagnetic radiation

    Get PDF
    We show that in addition to well known Bessel, Hermite-Gauss, and Laguerre-Gauss beams of electromagnetic radiation, one may also construct exponential beams. These beams are characterized by a fall-off in the transverse direction described by an exponential function of rho. Exponential beams, like Bessel beams, carry definite angular momentum and are periodic along the direction of propagation, but unlike Bessel beams they have a finite energy per unit beam length. The analysis of these beams is greatly simplified by an extensive use of the Riemann-Silberstein vector and the Whittaker representation of the solutions of the Maxwell equations in terms of just one complex function. The connection between the Bessel beams and the exponential beams is made explicit by constructing the exponential beams as wave packets of Bessel beams.Comment: Dedicated to the memory of Edwin Powe

    Finite Gel'fand pairs and their applications to Probability and Statistics

    Get PDF
    We present a general introduction to finite Gel’fand pairs and their associated spherical functions yielding different characterizations, examine a few explicit examples, and, for each of these examples, analyze the corresponding probabilistic problem, which will then be solved by applying the general results and the machinery developed for a particular Gel’fand pair

    Induced representations and Mackey theory

    Get PDF
    This is an exposition on Mackey theory for induced representations of finite group

    Von Neumann Regular Cellular Automata

    Full text link
    For any group GG and any set AA, a cellular automaton (CA) is a transformation of the configuration space AGA^G defined via a finite memory set and a local function. Let CA(G;A)\text{CA}(G;A) be the monoid of all CA over AGA^G. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τCA(G;A)\tau \in \text{CA}(G;A) is von Neumann regular (or simply regular) if there exists σCA(G;A)\sigma \in \text{CA}(G;A) such that τστ=τ\tau \circ \sigma \circ \tau = \tau and στσ=σ\sigma \circ \tau \circ \sigma = \sigma, where \circ is the composition of functions. Such an element σ\sigma is called a generalised inverse of τ\tau. The monoid CA(G;A)\text{CA}(G;A) itself is regular if all its elements are regular. We establish that CA(G;A)\text{CA}(G;A) is regular if and only if G=1\vert G \vert = 1 or A=1\vert A \vert = 1, and we characterise all regular elements in CA(G;A)\text{CA}(G;A) when GG and AA are both finite. Furthermore, we study regular linear CA when A=VA= V is a vector space over a field F\mathbb{F}; in particular, we show that every regular linear CA is invertible when GG is torsion-free elementary amenable (e.g. when G=Zd, dNG=\mathbb{Z}^d, \ d \in \mathbb{N}) and V=FV=\mathbb{F}, and that every linear CA is regular when VV is finite-dimensional and GG is locally finite with Char(F)o(g)\text{Char}(\mathbb{F}) \nmid o(g) for all gGg \in G.Comment: 10 pages. Theorem 5 corrected from previous versions, in A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer, 201

    A note on a local ergodic theorem for an infinite tower of coverings

    Full text link
    This is a note on a local ergodic theorem for a symmetric exclusion process defined on an infinite tower of coverings, which is associated with a finitely generated residually finite amenable group.Comment: Final version to appear in Springer Proceedings in Mathematics and Statistic

    On the density of periodic configurations in strongly irreducible subshifts

    Full text link
    Let GG be a residually finite group and let AA be a finite set. We prove that if XAGX \subset A^G is a strongly irreducible subshift of finite type containing a periodic configuration then periodic configurations are dense in XX. The density of periodic configurations implies in particular that every injective endomorphism of XX is surjective and that the group of automorphisms of XX is residually finite. We also introduce a class of subshifts XAZX \subset A^\Z, including all strongly irreducible subshifts and all irreducible sofic subshifts, in which periodic configurations are dense
    corecore