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REPRESENTATION THEORY OF WREATH PRODUCTS OF FINITE
GROUPS

T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli UDC 517.98

Abstract. This is an introduction to the representation theory of wreath products of finite groups.
We also discuss in full details a couple of examples.
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1. Introduction

This paper is an introduction to the representation theory of wreath products. Our exposition
is inspired to the book by James and Kerber [9]. Howewer, our approach is more analytical and in
particular, we interpret the exponentiation and the composition actions in terms of actions on suitable
trees. This is done in Section 2, while in Section 3 we use the little group method [5, Theorem 5.2]
to determine a complete list of irreducible representations of wreath products. This procedure does
not give immediately a concrete description of the matrix coefficients whose determination requires
a detailed analysis of the conjugacy classes. We end Section 3 by analyzing the composition action
of the wreath product on two permutation representations. In particular, we generalize Theorem 4.2
in [1] in the case the permutation representations are not multiplicity free.

In Section 4 we analyze two particular examples of groups of the form C2 � G where G is the
automorphism group of a finite graph X. Then, C2 �G is the automorphism group of the associated
lamplighter graph. We give an explicit list of all irreducible representations in the case G = Cn, the
cyclic group of n elements (which is the automorphism group of the discrete circle), and in the case
G = Sn (which is the automorphism group of the complete graph of n vertices).

2. Wreath Products of Finite Groups

Let G be a finite group acting transitively on a set X and let F be another finite group. Denote by
FX the set of all maps f : X → F . Set

F �G =
{
(f, g) : f ∈ FX , g ∈ G

} ≡ FX ×G.

The group G acts on FX in a natural way, by setting (gf)(x) = f(g−1x), for any g ∈ G, f ∈ FX

and x ∈ X. Moreover, FX is a group under pointwise multiplication: (ff ′)(x) = f(x) · f ′(x), and
g(ff ′) = gf · gf ′, (gf)−1 = gf−1, that is G acts on FX as a group of automorphisms. Then in F �G
we can define a multiplication law by setting:

(f, g)(f ′, g′) = (f · gf ′, gg′) (2.1)
for all (f, g), (f ′, g′) ∈ F �G. Clearly, (f · gf ′)(x) = f(x)f ′(g−1x), for all x ∈ X.
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Lemma 2.1. The set F �G with the multiplication law (2.1) is a group. Moreover, the identity element
is (1F , 1G), where 1F (x) = 1F for all x ∈ X, and the inverse of (f, g) is given by (g−1f−1, g−1).

Proof. It easy to show that (1F , 1G) is the identity. Moreover,

(g−1f−1, g−1)(f, g) = (g−1f−1 · g−1f, 1G) = (g−1(f−1f), 1G) = (1F , 1G) = (f, g)(g−1f−1, g−1),

and therefore (g−1f−1, g−1) is the inverse of (f, g). Finally, if (f, g), (f ′, g′), (f ′′, g′′) ∈ F �G then

[(f, g)(f ′, g′)](f ′′, g′′) = (f · gf ′ · gg′f ′′, gg′g′′) = (f, g)[(f ′, g′)(f ′′, g′′)]
simply because g(f ′ · g′f ′′) = gf ′ · gg′f ′′.

The group F �G is called the wreath product of F by (the permutation group) G. The subgroup

{(f, 1G) : f : X → F} ∼= FX

is called the base group. We will identify it with FX . It is easy to show that the base group is normal
in the wreath product. Moreover, if we identify

{
(1F , g) : g ∈ G

}
with G then the wreath product

may be written as a semidirect product: F �G = FX �G. The diagonal subgroup of the base group
FX is: diagFX =

{
f ∈ FX : f is constant on X} ∼= F . Clearly, diagFX ·G, as a subgroup of F �G,

is isomorphic to the direct product F ×G.
Suppose that F acts transitively on a finite set Y . Now we define a natural action of F �G on the

product space X × Y .

Lemma 2.2. For (f, g) ∈ F �G and (x, y) ∈ X × Y , set

(f, g)(x, y) = (gx, f(gx)y) ≡ (
gx, [(g−1f)(x)]y

)
(2.2)

Then (2.2) defines a transitive action of F �G on X × Y .

Proof. Clearly, (1F , 1G)(x, y) = (x, y) for any (x, y) ∈ X × Y . Moreover, if (f, g), (f ′, g′) ∈ F �G and
(x, y) ∈ X × Y then

[(f, g)(f ′, g′)](x, y) = (f · gf ′, gg′)(x, y) =
(
gg′x,

{
[(gg′)−1f · g′−1f ′](x)

}
y
)

=
(
gg′x, [(g−1f)(g′x)]

{
[(g′−1f ′)(x)]y

})
= (f, g)(g′x, f ′(g′x)y) = (f, g)[(f ′, g′)(x, y)]

and therefore (2.2) is an action. It is obvious that it is transitive.

The action defined in (2.2) is called the composition of the actions of G on X and F on Y . The
composition action restricted to diagFX ·G coincides with the product action of G× F on X × Y .

The theory of wreath products becomes more transparent if we think of them as groups acting on
finite trees. The tree of X×Y is the finite, two levels rooted tree obtained by taking the empty set ∅ as
the root, X as the first level and then attaching to each x ∈ X a copy of Y . More precisely, the vertex
set is V = {∅}∐X

∐
(X×Y ) and the edge set is E =

{{∅, x} : x ∈ X
}∐{{x, (x, y)} : x ∈ X, y ∈ Y

}
.

Then F � G acts on the tree (V,E) as a group of isometries: if (f, g) ∈ F � G then (f, g) fixes ∅,
sends x ∈ X to gx and sends (x, y) ∈ X × Y to (gx, f(gx)y) (composition action). In other words, G
permutes the first level and, if we fix g ∈ G and x ∈ X, the group {f(gx) : f ∈ FX} ∼= F permutes
{(gx, y) : y ∈ Y } ∼= Y .

Now let Y X be the set of all maps ϕ : X → Y . We can also define a natural action of F �G on Y X .

Lemma 2.3. For (f, g) ∈ F �G, ϕ ∈ Y X and x ∈ X, set

[(f, g)ϕ](x) = f(x)ϕ(g−1x). (2.3)
Then (2.3) is a transitive action of F �G on Y X .

Proof. Clearly, (1F , 1G)ϕ = ϕ. Moreover, if (f, g), (f ′, g′) ∈ F �G, ϕ ∈ Y X and x ∈ X, we have
{
[(f, g)(f ′, g′)ϕ]

}
(x) = [(f · gf ′, gg′)ϕ](x) = [f(x)f ′(g−1x)]ϕ(g′−1g−1x)

= f(x)[f ′(g−1x)ϕ(g′−1g−1x)] = f(x)
{
[(f ′, g′)ϕ](g−1x)

}
=
{
(f, g)[(f ′, g′)ϕ]

}
(x)
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Fig. 1. The tree of X × Y is obtained by attaching to each x ∈ X a copy of Y .
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Fig. 2. ϕ ∈ Y X may be seen as a subtree of the tree of X × Y .

and therefore (2.3) is an action. It is obvious that it is also transitive (the action of the subgroup FX
is transitive).

The action defined in (2.3) is called the exponentiation of the action of F by the action of G. Its
restriction to diagFX ·G is called the power of F by G.

Consider again the tree ofX×Y . We may identify any ϕ ∈ Y X with the subtree ∅∐X
∐{(x, ϕ(x)) :

x ∈ X)}. That is, Y X may be seen as the family of all subtrees obtained by taking the root ∅, all
the first level X and, for any x ∈ X, exactly one vertex (x, y) ∈ X × Y . Then the action of F �G on
this family of subtrees (induced by the composition action) coincides exactly with the exponentiation
action.

Now let H be a third group. We can form the wreath products H � F ≡ HY × F and then
(H � F ) � G ≡ (H � F )X × G. Alternatively, if we see F � G as a group acting on X × Y by the
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composition action, we can form the wreath product H � (F � G) ≡ HX×Y × (F � G). Now we show
that both constructions lead to the same result.

Theorem 2.1 (Associativity of the wreath product). The map

Ψ : H � (F �G) → (H � F ) �G,
(h, f, g) 	→ (ϑ, g)

where ϑ : X → H �F is defined by setting ϑ(x) = (h(x, ·), f(x)) for any x ∈ X, is a group isomorphism.

Proof. Clearly, Ψ is a bijection. Take (h, f, g), (h′, f ′, g′) ∈ H � (F �G). Their product is

(h, f, g)(h′, f ′, g′) = (h · (f, g)h′, f · gf ′, gg′), where [h · (f, g)h′](x, y) = h(x, y)h′(g−1x, f(x)−1y).

Then

Ψ((h, f, g)(h′, f ′, g′)) = (ϑ′′, gg′), where ϑ′′(x) = (h(x, ·)h′(g−1x, f(x)−1·), f(x)f ′(g−1x)).

On the other hand, if (ϑ, g) = Ψ(h, f, g) and (ϑ′, g′) = Ψ(h′, f ′, g′), then (ϑ, g)(ϑ′, g′) = (ϑ · gϑ′, gg′),
and

(ϑ · gϑ′)(x) = ϑ(x)ϑ′(g−1x) = (h(x, ·), f(x))(h′(g−1x, ·), f ′(g−1x))

= (h(x, ·)h′(g−1x, f(x)−1·), f(x)f ′(g−1x)),

that is ϑ · gϑ′ = ϑ′′.

Then we can write simply H �F �G. More generally, suppose that G1, G2, . . . , Gm are finite groups,
with Gi acting on the sets Xi, i = 1, 2 . . . ,m− 1. Then the iterated wreath product Gm �Gm−1 � . . . G1

is the set of all m-tuple (fm, fm−1, . . . , f2, f1) where f1 ∈ G1 and fk : X1 × · · · × Xk−1 → Gk,
k = 2, 3, . . . ,m, with the multiplication law

(fm, fm−1, . . . , f2, f1)(f ′m, f
′′
m−1, . . . , f

′
2, f

′
1) =

(
fm · (fm−1, . . . , f2, f1)f ′m, fm−1 · (fm−2, . . . , f2, f1)f ′m−1, . . . , f2 · f1f

′
2, f1f

′
1

)

where
(fk, fk−1, . . . , f2, f1)(x1, x2, . . . , xk) =

(
f1x1, f2(f1x1)x2, . . . , fk(f1xk−1)xk

)
,

for all (x1, x2, . . . , xk) ∈ X1 ×X2 × · · · ×Xk, k = 0, 1, 2 . . . ,m.

3. Representation Theory of Wreath Products

Let G, X, F be as in the previous sections. We want to describe the irreducible representations of
the wreath product F � G. In virtue of Theorem 9.1.6 and of Corollary 9.1.7 in [3], every irreducible
representation of the base group FX is of the form

⊗

x∈X
σx

where
X → F̂
x 	→ σx

is any map from X to F̂ , the dual of F . In other words, if f0 ∈ FX then
(
⊗

x∈X
σx

)

(f0, 1G) =
⊗

x∈X
σx(f0(x))

and if
⊗

x∈X
vx ∈ ⊗

x∈X
Vσx , with Vσx the space on which acts the representation σx, then

[(
⊗

x∈X
σx

)

(f0, 1G)

](
⊗

x∈X
vx

)

=
⊗

x∈X
σx(f0(x))vx.
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Lemma 3.1. The (f, g) conjugate of
⊗

x∈X
σx is given by

(f,g)(
⊗

x∈X
σx

)

=
⊗

x∈X

f(x)σg−1x ∼
⊗

x∈X
σg−1x.

Proof. Since (f, g)−1 = (g−1f−1, g−1), we have
(f,g)(

⊗

x∈X
σx

)

(f0, 1G) =

(
⊗

x∈X
σx

)

[(f, g)−1(f0, 1G)(f, g)] =

(
⊗

x∈X
σx

)

(g−1f−1 · g−1(f0f), 1G)

=
⊗

x∈X
σx(f(gx)−1f0(gx)f(gx)) =

⊗

x∈X
σg−1x(f(x)−1f0(x)f(x)) =

⊗

x∈X

f(x)σg−1x(f0(x))

=

[
⊗

x∈X

f(x)σg−1x

]

(f0, 1G)

but
f(x)σg−1x ∼ σg−1x

since f(x) ∈ F , and therefore
(f,g)(

⊗

x∈X
σx

)

∼
⊗

x∈X
σg−1x.

Lemma 3.2. Let σ =
(
⊗

x∈X
σx

)
∈ F̂X . Then the inærtia group of σ with respect to F �G is given by

IF �G(σ) = F � TG(σ),

where TG(σ) = {g ∈ G : σgx ∼ σx ∀x ∈ X}.
Proof. From Lemma 3.1 we know that

IF �G(σ) = {(f, g) : σgx ∼ σx, ∀x ∈ X}
and this is isomorphic to

FX � TG(σ) = F � TG(σ).

Remark 3.1. Actually we may write

TG(σ) = {g ∈ G : σgx = σx}.

Lemma 3.3. Each
(
⊗

x∈X
σx

)
∈ F̂X has an extension σ̃ to the whole IF �G(σ): it is given by setting

σ̃(f, g)

(
⊗

x∈X
vx

)

:=
⊗

x∈X
σg−1x(f(x))vg−1x,

for all (f, g) ∈ F � TG(σ) and
⊗

x∈X vx ∈⊗x∈X Vσx.

Proof. From the definition of σ̃, we have

σ̃(f, g)

(
⊗

x∈X
vx

)

=
⊗

x∈X
σg−1x(f(x))vg−1x =

⊗

x∈X
σx(f(x))vg−1x
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where the last equality follows from the definition of TG(σ). Therefore

σ̃((f1, g1) · (f2, g2))

(
⊗

x∈X
vx

)

= σ̃((f1 · (g1f2), g1g2)

(
⊗

x∈X
vx

)

=
⊗

x∈X
σx(f1(x)f2(g−1

1 x))vg−1
2 g−1

1 x.

On the other hand

σ̃(f1, g1)

(

σ̃(f2, g2)

(
⊗

x∈X
vx

))

= σ̃(f1, g1)

(
⊗

x∈X
σx(f2(x))vg−1

2 x

)

=
⊗

x∈X
σx(f1(x))σg−1

1 x(f2(g−1
1 x))vg−1

2 g−1
1 x =

⊗

x∈X
σx(f1(x))σx(f2(g−1

1 x))vg−1
2 g−1

1 x

=
⊗

x∈X
σx(f1(x)f2(g−1

1 x))vg−1
2 g−1

1 x

and this shows that σ̃ is a representation ending the proof.

Let Σ be a system of representatives for the F � G-conjugacy classes of irreducible representations
of F̂X . For each σ ∈ Σ, denote by σ̃ its extension to IF �G(σ) as shown in Lemma 3.3. For each
ψ ∈ T̂G(σ), denote by ψ its inflation (see [5, Equation (3)]) to IF �G(σ) (using the homomorphism
IF �G(σ) → TG(σ) ∼= IF �G(σ)/FX). Then, as an immediate consequence of the little group method of
Mackey and Wigner (see [5, Theorem 5.2]), we have the following.

Theorem 3.1.
F̂ �G =

{
IndGIF �G(σ)(σ̃ ⊗ ψ) : σ ∈ Σ, ψ ∈ T̂G(σ)

}

that is the above is the list of all irreducible representations of F � G and for different values of σ, ψ
we obtain inequivalent representations.

3.1. The character and the matrix coefficients of the representation σ̃. If we want to write
the character and the matrix coefficients of one of the irreducible representations in Theorem 3.1,
the main problem is to compute the character and the matrix coefficients of σ̃. Indeed, the matrix
coefficients of ψ are easy: they can be obtained by composing those of ψ with the homomorphism
IF �G(σ) → TG(σ) ∼= IF �G(σ)/B. Then, for σ̃ ⊗ ψ we can use the formulas for the character and
the matrix coefficients of a tensor product, and for IndGIF �G(σ)(σ̃ ⊗ ψ) the formulas for an induced
representation. Therefore, this section is entirely devoted to σ̃.

Let G be a finite group and, for g ∈ G, denote by C(g) the conjugacy class of G containing g.
Suppose that G acts on a finite set X and denote by π this action. That is, for g ∈ G, π(g) is the
permutation of X associated to g. Denote by C(π(g)) the cycles of the permutation π(g); then any
c ∈ C(π(g)) is of the form c = (x, π(g)−1x, . . . , π(g)−�(c)+1x), where �(c) is the length of c (that is the
smallest positive integer � such that π(g)�x = x). Moreover, the cycle decomposition of π(g) is just

π(g) =
∏

c∈C(π(g))

c ≡
∏

c∈C(π(g))

(x, π(g)−1x, . . . , π(g)−�(c)+1x).

If g, h ∈ G then C(π(hgh−1)) = hC(π(g)) where, if

c = (x, π(g)−1x, . . . , π(g)−�(c)+1x) ∈ C(π(g)),

then
hc = (π(h)x, π(h)π(g)−1x, . . . , π(h)π(g)−�(c)+1x).

Now let F be another finite group. Let D be the conjugacy classes of F . Form the wreath product
F � G = FX × G. In what follows, for the sake of simplicity, we will use the notation gx to denote
π(g)x. Moreover, if H is a group and a, b ∈ H, we will write a ∼H b to denote that a and b are
conjugate in H. For (f, g) ∈ F �G and c = (x, g−1x, . . . , g−�(c)+1x) ∈ C(g), we set

ac,x(f, g) = f(x) · f(g−1x) . . . f(g−�(c)+1) ≡ [f · (gf) . . . (g−�(c)+1f)](x). (3.1)
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Suppose that Ω1,Ω2, . . . ,Ωm are the orbits of TG(σ) on X, that is there exist inequivalent repre-
sentations σ1, σ2, . . . , σm ∈ F̂ such that σx = σi for all x ∈ Ωi, i = 1, 2, . . . ,m. Let vi1, v

i
2 . . . , v

1
di

be
an orthonormal basis in Vσi and di = dimVσi , i = 1, 2, . . . ,m. Then the character and the matrix
coefficients of σi are respectively:

χi(t) =
di∑

j=1

〈tvij , vij〉Vi , t ∈ F

uij,k(t) = 〈σ(t)vik, v
i
j〉Vi , t ∈ F, j, k = 1, 2, . . . , di.

Recall that

di∑

k=1

uij,k(t)u
i
k,h(t) = uij,h(t), σ(t)vik =

di∑

j=1

uij,k(t)vj .

For g ∈ TG(σ), denote by Ci(g) the cycles of the permutation induced by g on Ωi. Set

A =
{
ϕ : X → N| ϕ(x) ∈ {1, 2, . . . , di} ∀x ∈ Ωi

}
,

and for every ϕ ∈ A,

vϕ =
m⊗

i=1

⊗

x∈Ωi

viϕ(x).

Then {vϕ : ϕ ∈ A} is an orthonormal basis for
⊗

x∈X
Vσx . We will use the notation ac,x(f, g) in (3.1).

Theorem 3.2. The matrix coefficients and the character of the extension σ̃ of σ are given respectively
by :

uσ̃ψ,ϕ(f, g) =
m∏

i=1

∏

x∈Ωi

uiψ(x),ϕ(g−1x)(f(x)), ϕ, ψ ∈ A, (f, g) ∈ IF �G(σ),

χσ̃(f, g) =
m∏

i=1

∏

c∈Ci(g)

χσi(ac(f, g)), (f, g) ∈ IF �G(σ).

Proof. From Lemma 3.3, we obtain ((f, g) ∈ IF �G(σ))

σ̃(f, g)vϕ =
m⊗

i=1

⊗

x∈Ωi

σx(f(x))viϕ(g−1x) =
m⊗

i=1

⊗

x∈Ωi

⎛

⎝
di∑

j=1

uij,ϕ(g−1x)(f(x))vij

⎞

⎠

=
∑

ψ∈A

⎛

⎝
m∏

i=1

∏

x∈Ωi

uiψ(x),ϕ(g−1x)(f(x))

⎞

⎠ vψ,
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and this proves the formula for the matrix coefficients. Moreover, the character of σ̃ is given by

χσ̃(f, g) =
∑

ϕ∈A
〈σ̃(f, g)vϕ, vϕ〉 =

∑

ϕ∈A

⎛

⎝
m∏

i=1

∏

x∈Ωi

uiϕ(x),ϕ(g−1x)(f(x))

⎞

⎠

=
∑

ϕ∈A

⎛

⎜
⎜
⎜
⎝

m∏

i=1

∏

c≡(x,g−1x,...,

g−�(c)+1x)∈Ci(g)

uiϕ(x),ϕ(g−1x)(f(x))uiϕ(g−1x),ϕ(g−2x)(f(g−1x)) . . . ui
ϕ(g−�(c)+1x),ϕ(x)

(f(g−�(c)+1x))

⎞

⎟
⎟
⎟
⎠

=
m∏

i=1

∏

c≡(x,g−1x,...,

g−�(c)+1x)∈Ci(g)

di∑

ϕ(x)=1

di∑

ϕ(g−1x)=1

· · ·
di∑

ϕ(g−�(c)+1x)=1

uiϕ(x),ϕ(g−1x)(f(x))×

×uiϕ(g−1x),ϕ(g−2x)(f(g−1x)) . . . ui
ϕ(g−�(c)+1x),ϕ(x)

(f(g−�(c)+1x))

=
m∏

i=1

∏

c≡(x,g−1x,...,

g−�(c)+1x)∈Ci(g)

di∑

ϕ(x)=1

uiϕ(x),ϕ(x)(ac,x(f, g)) =
m∏

i=1

∏

c∈Ci(g)

χσi(ac(f, g)).

In the following corollary, we examine a particular case of Theorem (3.2).

Corollary 3.1. Suppose that σx = σ for all x ∈ X (so that TG(σ) = G and σ̃ ∈ F̂ �G). Then

χσ̃(f, g) =
∏

c∈C(g)

χσ(ac(f, g)), (f, g) ∈ F �G.

In particular,

χσ̃(1F , 1G) = (dimσ)|X|, χσ̃(1F , g) = (dimσ)|C(g)|, χσ̃(f, 1G) =
∏

x∈X
χσ(f(x)).

Finally, if f is constant, f(x) = t for all x ∈ X, and ak(g) = |{c ∈ C(g) : �(c) = k}|, then

χσ̃(f, g) =
|X|∏

k=1

χσ(tk)ak(g).

3.2. The composition of two permutation representations. In the notation of (2.2), suppose

that L(X) =
n⊕

i=0
aiVi and L(Y ) =

m⊕

j=0
bjWj are the decompositions of L(X) and L(Y ) respectively

into irreducible G- and F -representations. That is, V0, V1, . . . , Vn (respectively, W0,W1, . . . ,Wm) are
pairwise inequivalent irreducible representations and a0, a1, . . . , an (respectively, b0, b1, . . . , bm) are
their multiplicities in L(X) (respectively, L(Y )); we also suppose that V0 (respectively, W0) is the
trivial representation (so that a0 = b0 = 1). We fix x0 ∈ X and define K as the stabilizer of x0 in G,
that is K = {g ∈ G : gx0 = x0}.
Theorem 3.3. Consider X×Y as a permutation module with respect to the composition action (2.2).
Then the following

L(X × Y ) =

[
n⊕

i=0

ai(Vi ⊗W0)

]
⊕

⎡

⎣
m⊕

j=1

bj(L(X) ⊗Wj)

⎤

⎦ (3.2)

is the decomposition of L(X × Y ) into irreducible F �G-representation.
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Proof. First of all, we prove that every subspace in the right hand side of (3.2) is F � G-invariant.
Suppose that G ∈ L(X), F ∈ L(Y ), (x, y) ∈ X × Y and (f, g) ∈ F �G. Then

[(f, g)(G⊗F)](x, y) = (G⊗F)[(f, g)−1(x, y)] = (G⊗F)(g−1x, f(x)−1y) = (gG)(x) · (f(x)F)(y). (3.3)

In general, (f(x)F)(y) depends on x, and therefore (3.3) is not a tensor product. But there are two
special cases. If v ⊗ 1Y ∈ Vi ⊗W0 then (f, g)(v ⊗ 1Y ) = (gv) ⊗ 1Y , and therefore each space Vi ⊗W0

is F �G-invariant. On the other hand, if (x′, y′) ∈ X × Y and δx ⊗ w ∈ L(X) ⊗Wj , then

[(f, g)(δx ⊗ w)](x′, y′) = δgx(x′) · [f(x′)w](y′),

which implies that
(f, g)(δx ⊗ w) = δgx ⊗ [f(x)w], (3.4)

and each space L(X) ⊗Wj is also invariant.
Now, by mean of Theorem 3.1, we want to prove that each subspace in the right hand side of (3.2) is

F �G-irreducible. A representation of the form Vi⊗W0 is clearly irreducible, because Vi is G-irreducible
and W0 is trivial. In the setting of Theorem 3.1, take σ = the trivial FX -representation, that is the
tensor product

⊗

x∈X
(W0)x of |X|-times the trivial representation of F . Then σ has the whole F � G

as its inærtia group, and then tensoring its extension to F � G (which is the trivial representation of
F �G) with Vi we obtain exactly Vi ⊗W0.

On the other hand, if we take σj= the representation of FX on the tensor product
⊗

x∈X
Wε(x), where

ε(x0) = j and ε(x) = 0 for x �= x0, then the inærtia group of σj is F � K. Denote by ι the trivial

representation of
F �K
FX

∼= K and by σ̃j , ι respectively the extension of σj and the inflation of ι (both

to F �K). We want to show that the representation IndF �G
F �K(ι⊗ σ̃j) is isomorphic to the representation

of F � G on L(X) ⊗Wj (clearly, ι ⊗ σ̃j ∼= σ̃j). For each x ∈ X, choose tx ∈ G such that: txx0 = x.
Then {tx : x ∈ X} is a system of representatives for the right cosets of K in G, and {(1X , tx) : x ∈ X}
is a system of representatives for the right cosets of F �K in F �G. Applying (3.4), we can write:

L(X) ⊗Wj =
⊕

x∈X
(1X , tx)

(
L({x0}) ⊗Wj

)
(3.5)

and another application of (3.4) yields

(f, k)(δx0 ⊗ w) = δx0 ⊗ [f(x0)w].

The last identity shows that the representation of F �K on L({x0}) ⊗Wj is isomorphic to ι ⊗ σ̃j
(see Lemma (3.3)). Then (3.5) ensure us that the representation

IndF �G
F �K(ι⊗ σ̃j)

is isomorphic to the representation of F � G on L(X) ⊗ Wj . It follows that L(X) ⊗ Wj is F � G-
irreducible.

We recall that in any isotypic decomposition like L(X) =
m⊕

i=0
aiVi, the sum of the squares of the

multiplcities of the irreducible representations is equal to the number of orbits of K on X, that is
m∑

i=0

(ai)2 = # orbits of K on X.

This is called Wielandt’s Lemma in [1–4]. See also [15, 16].

Exercise 3.1. Show that for any orthogonal decomposition of L(X) into G-invariant subspaces

L(X) =
m⊕

l=0

clUl, (3.6)
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where every block clUl is the orthogonal sum of cl invariant G-isomorphic subspaces, we have
h∑

l=0

(cl)2 ≤ # orbits of K on X,

with equality if and only if (3.6) is the isotypic decomposition. [Hint: You can obtain the isotypic
decomposition in two steps: first decompose each Ul into irreducible representations and then group
together equivalent copies. At both steps, the sum of the squares of the multiplicities increases, and
remains stationary if and only if the Ul are irreducible (first step) and pairwise inequivalent (second
step).]

Exercise 3.2. Fix y0 ∈ Y and suppose that H is the stabilizer (in F ) of y0.
(1) Prove that J = {(f, g) ∈ F �G : g ∈ K, f(x0) = 1F } is the stabilizer of (x0, y0).
(2) Suppose that X =

∐r
u=0 Ξs and Y =

∐t
v=0 Λv are the decompositions of X into K-orbits and

of Y into H-orbits, with Ξ0 = {x0} and Λ0 = {y0}. Prove that

X × Y =

[
t∐

v=0

(Ξ0 × Λv)

]
∐

[
s∐

u=1

(Ξu × Y )

]

is the decomposition of X × Y into J-orbits.

Exercise 3.3. Use Exercise 3.1 and Exercise 3.2 to prove that all the representations in the right
hand side of (3.2) are irreducible.

4. Representation Theory of Groups of the form C2 �G
Let G be a finite group and X a finite homogeneous G-space.
For ω, θ ∈ CX2 , set ω · θ =

∑

x∈X
ω(x)θ(x) and define χθ ∈ L(CX2 ) by setting χθ(ω) = (−1)ω·θ. Then

the dual group of CX2 is just ĈZ2 = {χθ : θ ∈ CX2 } and G acts on it by setting: gχθ(ω) = χθ(g−1ω), that

is gχθ = χgθ. The action of G on ĈX2 is equivalent to the action on CX2 and both are the same thing
as the action on the subsets of X. In particular, the stabilizer Gθ = {g ∈ G : gχθ = χθ} coincides with
the stabilizer of Zθ = {x ∈ X : θ(x) = 0}. The extension of the character χθ is simply the character
χ̃θ of C2 � Gθ, given by: χ̃θ(ω, g) = χθ(ω), for all ω ∈ CZ2 , g ∈ Gθ. Similarly, if η ∈ Ĝθ (that is η is
an irreducible representation of Gθ) then its inflation η# to C2 �Gθ is given by: η#(ω, g) = η(g), for
all ω ∈ CZ2 , g ∈ Gθ. Both χ̃θ and η# are irreducible C2 � Gθ-representations, and so is their tensor
product χ̃θ ⊗ η#; clearly χ̃θ ⊗ η#(ω, g) = χθ(ω)η(g). Now we can apply theorem 3.1.

Theorem 4.1. Let Θ be a systems of representatives for the orbits of G on CZ2 (any orbit has exactly
one element in Θ). Then

Ĉ2 �G =
{

IndC2�G
C2�Gθ

χ̃θ ⊗ η# : θ ∈ Θ and η ∈ Ĝθ

}
,

that is the right hand side is a complete list of irreducible inequivalent representations of C2 �G.

4.1. Representation theory of the finite lamplighter group C2 � Cn. Any irreducible repre-

sentation of Cn is a one-dimensional character of the form: ek(h) = exp
(

2πi
hk

n

)
, h, k ∈ Cn.

Think of θ ∈ Cn2 as a function θ : Z → C2 satisfying θ(k+n) = θ(k) for any k ∈ Z. Then the period
of θ is the smallest positive integer t = t(θ) such that θ(k + t) = θ(k) for any k ∈ Z; clearly t divides
n and if n = mt then the stabilizer of θ is the subgroup Cm = 〈t〉 (recall also that for any divisor m of
n, the subgroup of Cn isomorphic to Cm is unique [11]). The characters of the subgroup 〈t〉 are given
by: e0|〈t〉, e1|〈t〉, . . . , em−1|〈t〉, where e0, e1, . . . , em−1 are as above. Indeed, for 0 ≤ r, l ≤ m−1 we have:

er(lt) = exp
(

2πi
rlt

n

)
= exp

(
2πi

rl

m

)
.
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We set er|〈t〉(k) = er(k) when k ∈ 〈t〉, er|〈t〉(k) = 0 otherwise. In what follows, we also set m(θ) =
n

t(θ)
,

but we will write simply t and m when it is clear the θ we are talking about.
Now take θ ∈ Cn2 and 0 ≤ r ≤ m− 1. If we compute the inflation of er|〈t〉 and the extension of χθ,

we obtain the character χ̃θ ⊗ (er|〈t〉)# of Cn2 � 〈t〉 given by:

χ̃θ ⊗ (er|〈t〉)#(ω, lt) = χθ(ω)er(lt),

for ω ∈ Cn2 and l = 0, 1, . . . ,m− 1. Let Θ be a set of representatives for the orbits of Cn on Cn2 (such
orbits may be enumerated by mean of the so called Polya–Redfield theory; see [12] for an elementary
account and [10] for a more comprehensive treatment). Then we can apply Theorem 4.1.

Theorem 4.2. The set
{

IndC2�Cn

C2�〈t(θ)〉
[
χ̃θ ⊗ (er|〈t(θ)〉)#

]
: θ ∈ Θ, r = 0, 1, . . . ,m(θ) − 1

}

is a complete list of irreducible inequivalent representations of Cn2 � Cn.
Now we want to give the matrix expression for IndC

n
2 �Cn

Cn
2 �〈t〉 χ̃θ ⊗ (er|〈t〉)#. If (ω, k) ∈ Cn2 � Cn and

0 ≤ s, j ≤ t− 1 then [Uθ,r(ω, k)]s,j will denote the (s, j)-entry of this matrix evaluated at (ω, k). Note
that {(0, s) : s = 0, 1, . . . , t − 1} is a set of representatives for the right cosets of C2 � 〈t〉 in C2 � Cn.
Moreover, ((−s)ω, k + j − s) ∈ C2 � 〈t〉 if and only if k + j − s ∈ 〈t〉, that is, if and only if t divides
k + j − s, and therefore

[χ̃θ ⊗ (er|〈t〉)#]((0Cn , s)
−1(ω, k)(0Cn , j)) =χθ((−s)ω)er|〈t〉(k + j − s)

=
{
χ̃sθ ⊗ [(s− j)(er|〈t〉)]#

}
(ω, k)

(4.1)

Then we may apply the formula for the matrix of an induced representation ( [4, Equation (10)]),
getting:

[Uθ,r(ω, k)]s,j =

{
0 if k + j − s /∈ 〈t〉
χθ((−s)ω)er(k + j − s) if k + j − s ∈ 〈t〉. (4.2)

4.2. Representation theory of the hyperoctahedral group C2 � Sn. Now G = Sn and X =
{1, 2, . . . , n}. For any 0 ≤ k ≤ n, choose θ(k) ∈ CX2 such that |{j ∈ Z : θ(k)(j) = 0}| = k. Then
{θ(0), θ(1), . . . , θ(n)} is a set of representatives for the orbits of Sn on CX2 . Moreover, the stabilizer of
θ(k) is isomorphic to Sk ×Sn−k. We recall that the irreducible representations of the simmetric group
St are canonically parametrized by the partitions of t; [9, 13]. For λ � t (this means that λ is a partition
of t), we will denote by ρλ the irreducuble representation of St canonically associated to λ and by Sλ
the corresponding representation space. The irreducible representations of the group Sk × Sn−k are
all of the form ρλ ⊗ ρμ, for λ � k and μ � n − k. If we set ρ[λ;μ] = IndC2�Sn

C2�(Sk×Sn−k)[χ̃θ(k) ⊗ (ρλρμ)#],
applying theorem 4.1 we have the next result.

Theorem 4.3. {
ρ[λ;μ] : λ � k, μ � n− k and 0 ≤ k ≤ n

}

is a complete list of inequivalent, irreducible C2 � Sn-representations.

See also [7, 9].
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