1,378 research outputs found
Faraday waves on a viscoelastic liquid
We investigate Faraday waves on a viscoelastic liquid. Onset measurements and
a nonlinear phase diagram for the selected patterns are presented. By virtue of
the elasticity of the material a surface resonance synchronous to the external
drive competes with the usual subharmonic Faraday instability. Close to the
bicriticality the nonlinear wave interaction gives rise to a variety of novel
surface states: Localised patches of hexagons, hexagonal superlattices,
coexistence of hexagons and lines. Theoretical stability calculations and
qualitative resonance arguments support the experimental observations.Comment: 4 pages, 4figure
Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection
Motivated by experimental observations of exotic standing wave patterns in
the two-frequency Faraday experiment, we investigate the role of normal form
symmetries in the pattern selection problem. With forcing frequency components
in ratio m/n, where m and n are co-prime integers, there is the possibility
that both harmonic and subharmonic waves may lose stability simultaneously,
each with a different wavenumber. We focus on this situation and compare the
case where the harmonic waves have a longer wavelength than the subharmonic
waves with the case where the harmonic waves have a shorter wavelength. We show
that in the former case a normal form transformation can be used to remove all
quadratic terms from the amplitude equations governing the relevant resonant
triad interactions. Thus the role of resonant triads in the pattern selection
problem is greatly diminished in this situation. We verify our general results
within the example of one-dimensional surface wave solutions of the
Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a
1:2 spatial resonance takes the place of a resonant triad in our investigation.
We find that when the bifurcating modes are in this spatial resonance, it
dramatically effects the bifurcation to subharmonic waves in the case of
forcing frequencies are in ratio 1/2; this is consistent with the results of
Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies
are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the
presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late
Phenoconversion from probable rapid eye movement sleep behavior disorder to mild cognitive impairment to dementia in a population-based sample
© 2017 The Authors Introduction Rapid eye movement sleep behavior disorder (RBD) is strongly associated with synucleinopathies. In 2012, we reported an increased risk of mild cognitive impairment (MCI) and Parkinson disease (PD) in cognitively normal Olmsted County, Minnesota, residents, aged 70 to 89 years with probable RBD. Here, we examine their progression to dementia and other neurodegenerative phenotypes. Methods Fifteen participants with RBD who were diagnosed with either MCI or PD were longitudinally followed, and their subsequent clinical courses were reviewed. Results Over 6.4 ± 2.9 years, six of the 14 participants with MCI developed additional neurodegenerative signs, five of whom had Lewy body disease features. Four of them progressed to dementia at a mean age 84.8 ± 4.9 years, three of whom met the criteria for probable dementia with Lewy bodies. One subject with PD developed MCI, but not dementia. Discussion Our findings from the population-based sample of Olmsted County, Minnesota, residents suggest that a substantial number of RBD patients tend to develop overt synucleinopathy features over time, and RBD patients who develop MCI and subsequent dementia have clinical features most consistent with dementia with Lewy bodies
Simultaneous optical polarimetry and X-ray data of the near synchronous polar RX J2115-5840
We present simultaneous optical polarimetry and X-ray data of the near
synchronous polar RX J2115-5840. We model the polarisation data using the
Stokes imaging technique of Potter et al. We find that the data are best
modelled using a relatively high binary inclination and a small angle between
the magnetic and spin axes. We find that for all spin-orbit beat phases, a
significant proportion of the accretion flow is directed onto the lower
hemisphere of the white dwarf, producing negative circular polarisation. Only
for a small fraction of the beat cycle is a proportion of the flow directed
onto the upper hemisphere. However, the accretion flow never occurs near the
upper magnetic pole, whatever the orientation of the magnetic poles. This
indicates the presence of a non-dipole field with the field strength at the
upper pole significantly higher. We find that the brightest parts of the hard
X-ray emitting region and the cyclotron region are closely coincident.Comment: 9 pages, accepted for publication in MNRAS 2 March 200
Pattern formation in 2-frequency forced parametric waves
We present an experimental investigation of superlattice patterns generated
on the surface of a fluid via parametric forcing with 2 commensurate
frequencies. The spatio-temporal behavior of 4 qualitatively different types of
superlattice patterns is described in detail. These states are generated via a
number of different 3--wave resonant interactions. They occur either as
symmetry--breaking bifurcations of hexagonal patterns composed of a single
unstable mode or via nonlinear interactions between the two primary unstable
modes generated by the two forcing frequencies. A coherent picture of these
states together with the phase space in which they appear is presented. In
addition, we describe a number of new superlattice states generated by 4--wave
interactions that arise when symmetry constraints rule out 3--wave resonances.Comment: The paper contains 34 pages and 53 figures and provides an extensive
review of both the theoretical and experimental work peformed in this syste
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls of arbitrary orientation
A linear stability analysis of the free surface of a horizontally unbounded
ferrofluid layer of arbitrary depth subjected to vertical vibrations and a
horizontal magnetic field is performed. A nonmonotonic dependence of the
stability threshold on the magnetic field is found at high frequencies of the
vibrations. The reasons of the decrease of the critical acceleration amplitude
caused by a horizontal magnetic field are discussed. It is revealed that the
magnetic field can be used to select the first unstable pattern of Faraday
waves. In particular, a rhombic pattern as a superposition of two different
oblique rolls can occur. A scaling law is presented which maps all data into
one graph for the tested range of viscosities, frequencies, magnetic fields and
layer thicknesses.Comment: 8 pages, 6 figures, RevTex
Intracoronary Brachytherapy, a Promising Treatment Option for Diabetic Patients: Results from a European Multicenter Registry (RENO)
Despite advances in the interventional treatment of coronary disease, diabetics still have double the case fatality rate as nondiabetics. The purpose of this an
- …