662 research outputs found
Spin Gap in a Doped Kondo Chain
We show that the Kondo chain away from half-filling has a spin gap upon the
introduction of an additional direct Heisenberg coupling between localized
spins. This is understood in the weak-Kondo-coupling limit of the
Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit
by a mapping to a modified t-J model. Only for certain ranges of filling and
Heisenberg coupling does the spin gap phase extend from weak to strong
coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and
clarification
Exact Solution for the Metric and the Motion of Two Bodies in (1+1) Dimensional Gravity
We present the exact solution of two-body motion in (1+1) dimensional dilaton
gravity by solving the constraint equations in the canonical formalism. The
determining equation of the Hamiltonian is derived in a transcendental form and
the Hamiltonian is expressed for the system of two identical particles in terms
of the Lambert function. The function has two real branches which join
smoothly onto each other and the Hamiltonian on the principal branch reduces to
the Newtonian limit for small coupling constant. On the other branch the
Hamiltonian yields a new set of motions which can not be understood as
relativistically correcting the Newtonian motion. The explicit trajectory in
the phase space is illustrated for various values of the energy. The
analysis is extended to the case of unequal masses. The full expression of
metric tensor is given and the consistency between the solution of the metric
and the equations of motion is rigorously proved.Comment: 34 pages, LaTeX, 16 figure
The Two-Dimensional Analogue of General Relativity
General Relativity in three or more dimensions can be obtained by taking the
limit in the Brans-Dicke theory. In two dimensions
General Relativity is an unacceptable theory. We show that the two-dimensional
closest analogue of General Relativity is a theory that also arises in the
limit of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9
Gravitation and Cosmology in Generalized (1+1)-dimensional dilaton gravity
The actions of the ``'' and string-inspired theories of gravity in (1+1)
dimensions are generalized into one single action which is characterized by two
functions. We discuss differing interpretations of the matter stress-energy
tensor, and show how two such different interpretations can yield two different
sets of field equations from this action. The weak-field approximation,
post-Newtonian expansion, hydrostatic equilibrium state of star and
two-dimensional cosmology are studied separately by using the two sets of field
equations. Some properties in the ``'' and string-inspired theories are
shown to be generic in the theory induced by the generalized action.Comment: 34 page
New Types of Thermodynamics from -Dimensional Black Holes
For normal thermodynamic systems superadditivity , homogeneity \H and
concavity \C of the entropy hold, whereas for -dimensional black holes
the latter two properties are violated. We show that -dimensional black
holes exhibit qualitatively new types of thermodynamic behaviour, discussed
here for the first time, in which \C always holds, \H is always violated
and may or may not be violated, depending of the magnitude of the black
hole mass. Hence it is now seen that neither superadditivity nor concavity
encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to
appear in Class. Quant. Gra
Spin, Charge and Quasiparticle Gaps in the One-Dimensional Kondo Lattice with f^2 Configuration
The ground state properties of the one-dimensional Kondo lattice with an f^2
configuration at each site are studied by the density matrix renormalization
group method. At half-filling, competition between the Kondo exchange J and the
antiferromagnetic intra f-shell exchange I leads to reduction of energy gaps
for spin, quasi-particle and charge excitations. The attractive force among
conduction electrons is induced by the competition and the bound state is
formed. As J/I increases the f^2 singlet gives way to the Kondo singlet as the
dominant local correlation. The remarkable change of the quasi-particle gap is
driven by the change of the spin-1/2 excitation character from the itinerant
one to the localized one. Possible metal-insulator transition is discussed
which may occur as the ratio J/I is varied by reference to mean-field results
in the f^2 lattice system and the two impurity Kondo system.Comment: 7 pages, 7 figures, submitted to J. Phys. Soc. Jp
Classification and Stability of Phases of the Multicomponent One-Dimensional Electron Gas
The classification of the ground-state phases of complex one-dimensional
electronic systems is considered in the context of a fixed-point strategy.
Examples are multichain Hubbard models, the Kondo-Heisenberg model, and the
one-dimensional electron gas in an active environment. It is shown that, in
order to characterize the low-energy physics, it is necessary to analyze the
perturbative stability of the possible fixed points, to identify all discrete
broken symmetries, and to specify the quantum numbers and elementary wave
vectors of the gapless excitations. Many previously-proposed exotic phases of
multichain Hubbard models are shown to be unstable because of the ``spin-gap
proximity effect.'' A useful tool in this analysis is a new generalization of
Luttinger's theorem, which shows that there is a gapless even-charge mode in
any incommensurate N-component system.Comment: 15 pages revtex. Final version as publishe
The Oscillating Universe: an Alternative to Inflation
The aim of this paper is to show, that the 'oscillating universe' is a viable
alternative to inflation. We remind that this model provides a natural solution
to the flatness or entropy and to the horizon problem of standard cosmology. We
study the evolution of density perturbations and determine the power spectrum
in a closed universe. The results lead to constraints of how a previous cycle
might have looked like. We argue that most of the radiation entropy of the
present universe may have originated from gravitational entropy produced in a
previous cycle.
We show that measurements of the power spectrum on very large scales could in
principle decide whether our universe is closed, flat or open.Comment: revised version for publication in Classical and Quantum Gravity, 23
pages, uuencoded compressed tarred Latex file with 7 eps figures included,
fig.8 upon reques
Two-dimensional higher-derivative gravity and conformal transformations
We consider the lagrangian in classical (=non-quantized)
two-dimensional fourth-order gravity and give new relations to Einstein's
theory with a non-minimally coupled scalar field. We distinguish between
scale-invariant lagrangians and scale-invariant field equations. is
scale-invariant for F = c_1 R\sp {k+1} and a divergence for . The
field equation is scale-invariant not only for the sum of them, but also for
. We prove this to be the only exception and show in which sense it
is the limit of \frac{1}{k} R\sp{k+1} as . More generally: Let be
a divergence and a scale-invariant lagrangian, then has a
scale-invariant field equation. Further, we comment on the known generalized
Birkhoff theorem and exact solutions including black holes.Comment: 16 pages, latex, no figures, [email protected], Class. Quant.
Grav. to appea
- …