347 research outputs found
An unexpected major role for proteasome-catalyzed peptide splicing in generation of T cell epitopes: Is there relevance for vaccine development?
Efficient and safe induction of CD8(+) T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8(+) T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8(+) T cell epitope generation, i.e., by protea-some-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8(+) T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design
The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes
AbstractPI31 is a previously described inhibitor of 20S proteasomes. Using recombinant PI31 we have analyzed its effect on proteasomal hydrolyzing activity of short fluorogenic substrates and of a synthetic 40-mer polypeptide. In addition, we investigated its influence on the activation of 20S proteasome by the proteasome activator PA28. PI31 inhibits polypeptide degradation already at concentrations which only partially inhibit fluorogenic substrate turnover and immunosubunits do not influence the PI31 binding affinity. Furthermore our data demonstrate that PI31 is a potent competitor of PA28-mediated activation
An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes:Is There Relevance for Vaccine Development?
Efficient and safe induction of CD8+ T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8+ T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8+ T cell epitope generation, i.e., by proteasome-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8+ T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design.</p
In a therapeutic setting, mouse IgG2a isotype is superior to mIgG1 or mIgE in controlling tumor growth
UNLABELLED: In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models. However, in mice, the efficacy of antibody-based tumor therapy is largely restricted to a prophylactic application. Direct isotype comparison studies in mice in a therapeutic setting are scarce. In this study, we assessed the efficacy of mouse tumor-targeting antibodies of different isotypes in a therapeutic setting using a highly systematic approach. To this end, we engineered and expressed antibodies of the same specificity but different isotypes, targeting the artificial tumor antigen CD90.1/Thy1.1 expressed by B16 melanoma cells. Our experiments revealed that in a therapeutic setting mIgG2a was superior to both mIgE and mIgG1 in controlling tumor growth. Furthermore, the observed mIgG2a antitumor effect was entirely Fc mediated as the protection was lost when an Fc-silenced mIgG2a isotype (LALA-PG mutations) was used. These data confirm mIgG2a superiority in a therapeutic tumor model. SIGNIFICANCE: Direct comparisons of different antibody isotypes of the same specificity in cancer settings are still scarce. Here, it is shown that mIgG2a has a greater effect compared with mIgG1 and mIgE in controlling tumor growth in a therapeutic setting
A novel efficient bispecific antibody format, combining a conventional antigen-binding fragment with a single domain antibody, avoids potential heavy-light chain mis-pairing
Due to the technical innovations in generating bispecific antibodies (BsAbs) in recent years, BsAbs have become important reagents for diagnostic and therapeutic applications. However, the difficulty of producing a heterodimer consisting of two different arms with high yield and purity constituted a major limitation for their application in academic and clinical settings. Here, we describe a novel Fc-containing BsAb format (Fab × sdAb-Fc) composed of a conventional antigen-binding fragment (Fab), and a single domain antibody (sdAb), which avoids heavy-light chain mis-pairing during antibody assembly. In this study, the Fab x sdAb-Fc BsAbs were efficiently produced by three widely used heavy-heavy chain heterodimerization methods: Knobs-into-holes (KIH), Charge-pairs (CP) and controlled Fab-arm exchange (cFAE), respectively. The novel Fab x sdAb-Fc format provided a rapid and efficient strategy to generate BsAb with high purity and a unique possibility to further purify desired BsAbs from undesired antibodies based on molecular weight (MW). Compared to conventional BsAb formats, the advantages of Fab x sdAb-Fc format may thus provide a straightforward opportunity to apply bispecific antibody principles to research and development of novel targets and pathways in diseases such as cancer and autoimmunity
- …