5 research outputs found

    urinary metabolomics study of workers exposed to hexavalent chromium

    Get PDF
    Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).publishersversionpublishe

    Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part I—Animal Model Studies

    No full text
    Population and laboratory studies indicate that exposure to various forms of arsenic (As) is associated with many adverse health effects; therefore, methods are being sought out to reduce them. Numerous studies focus on the effects of nutrients on inorganic As (iAs) metabolism and toxicity, mainly in animal models. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of iAs metabolism and the reduction of the severity of the whole spectrum of disorders related to iAs exposure. In this review, which includes 58 (in vivo and in vitro studies) original papers, we present the current knowledge in the area. In vitro and in vivo animal studies showed that methionine, choline, folic acid, vitamin B2, B12 and zinc reduced the adverse effects of exposure to iAs in the gastrointestinal, urinary, lymphatic, circulatory, nervous, and reproductive systems. On the other hand, it was observed that these compounds (methionine, choline, folic acid, vitamin B2, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency or excess may impair iAs metabolism and increase iAs toxicity. Promising results of in vivo and in vitro on animal model studies show the possibility of using these nutrients in populations particularly exposed to As

    Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II—Human Studies

    No full text
    Exposure to various forms of arsenic (As), the source of which may be environmental as well as occupational exposure, is associated with many adverse health effects. Therefore, methods to reduce the adverse effects of As on the human body are being sought. Research in this area focuses, among other topics, on the dietary compounds that are involved in the metabolism of this element. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of inorganic As (iAs) metabolism and the reduction in the severity of the whole spectrum of disorders related to As exposure. In this review, which included 62 original papers (human studies) we present the current knowledge in the area. In human studies, these compounds (methionine, choline, folic acid, vitamin B2, B6, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency may impair iAs metabolism and increase As toxicity. Taking into account the results of studies conducted in populations exposed to As, it is reasonable to carry out prophylactic activities. In particular nutritional education seems to be important and should be focused on informing people that an adequate intake of those dietary compounds potentially has a modulating effect on iAs metabolism, thus, reducing its adverse effects on the body

    Metabolic Changes and Their Associations with Selected Nutrients Intake in the Group of Workers Exposed to Arsenic

    No full text
    Arsenic (As) exposure causes numerous adverse health effects, which can be reduced by the nutrients involved in the metabolism of iAs (inorganic As). This study was carried out on two groups of copper-smelting workers: WN, workers with a urinary total arsenic (tAs) concentration within the norm (n = 75), and WH, workers with a urinary tAs concentration above the norm (n = 41). This study aimed to analyze the association between the intake level of the nutrients involved in iAs metabolism and the signal intensity of the metabolites that were affected by iAs exposure. An untargeted metabolomics analysis was carried out on urine samples using liquid chromatography–mass spectrometry, and the intake of the nutrients was analyzed based on 3-day dietary records. Compared with the WN group, five pathways (the metabolism of amino acids, carbohydrates, glycans, vitamins, and nucleotides) with twenty-five putatively annotated metabolites were found to be increased in the WH group. In the WN group, the intake of nutrients (methionine; vitamins B2, B6, and B12; folate; and zinc) was negatively associated with six metabolites (cytosine, D-glucuronic acid, N-acetyl-D-glucosamine, pyroglutamic acid, uridine, and urocanic acid), whereas in the WH group, it was associated with five metabolites (D-glucuronic acid, L-glutamic acid, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and uridine). Furthermore, in the WH group, positive associations between methionine, folate, and zinc intake and the signal intensity of succinic acid and 3-mercaptolactic acid were observed. These results highlight the need to educate the participants about the intake level of the nutrients involved in iAs metabolism and may contribute to further considerations with respect to the formulation of dietary recommendations for people exposed to iAs

    Can the effects of chromium compounds exposure be modulated by vitamins and microelements?

    No full text
    Chromium (Cr) is a very common element. It occurs in 2 oxidation states, Cr(III) and Cr(VI). Although Cr(III) is not considered an element essential for mammals, it raises lots of controversy due to its role in the body. While Cr(III) action should be considered an effect of pharmacological action, Cr(VI) is included in the first group of carcinogens for humans. Moreover, it induces numerous pathological changes in the respiratory, urinary, reproductive and digestive systems. In addition, Cr(VI) is used in many industry branches, causing millions of workers all over the world to be exposed to Cr(VI) compounds. A considerable number of the occupationally exposed individuals are in favor of a deep analysis of the mechanisms of Cr(VI) action and a search for a way to reduce its negative impact on the human body. Numerous reactive oxygen species inducing oxidative stress and causing various damage are produced during Cr(VI) reduction in the cells. A good balance between antioxidants and pro-oxidants can reduce Cr(VI)-induced damage. The influence of vitamins and microelements on the adverse Cr(VI) effects has no systematic research results summary. Therefore, this work focuses on the role of dietary antioxidants such as vitamins and microelements in the prevention of Cr(VI) adverse health effects. Numerous studies have revealed a protective influence of vitamins (mainly vitamins E and C) as well as microelements (especially selenium) on the reduction of Cr(VI)-induced adverse changes. A potential protective effect of these ingredients may be useful in occupational groups that are particularly exposed to Cr(VI). However, more research in this area is required
    corecore