3 research outputs found

    Synergistic effect of conformational changes in phosphoglycerate kinase 1 product release

    No full text
    In the glycolysis pathway, phosphoglycerate kinase 1 (PGK1) transfers one phosphoryl-group from 1,3-diphosphoglycerate (1,3BPG) to ADP to product 3-phosphoglycerate (3PG) and ATP. The catalytic process is accompanied with the conversion between the open conformation and the closed conformation of PGK1. However, the dynamic collaboration mechanism between the PGK1 conformation transition and the products releasing process remains poorly understood. Here using molecular dynamics simulations combined with molecular mechanics generalized born surface area (MM/GBSA) analysis, we demonstrated that PGK1 in the closed conformation first releases the product ATP to reach a semi-open conformation, and releases the product 3PG to achieve the full open conformation, which could accept new substrates ADP and 1,3BPG for the next cycle. It is noteworthy that the phosphorylation of PGK1 at T243 causes the loop region (residues L248-E260) flip outside the protein, and the phosphorylation of Y324 leads PGK1 become looser. Both modifications cause the exposure of the ADP/ATP binding site, which was beneficial for the substrates/products binding/releasing of PGK1. In addition, the other post translational modifications (PTMs) were also able to regulate the ligands binding/releasing with different effects. Our results revealed the dynamic cooperative molecular mechanism of PGK1 conformational transition with products releasing, as well as the influence of PTMs, which would contribute to the understanding of PGK1 substrates/products conversion process and the development of small molecule drugs targeting PGK1. Communicated by Ramaswamy H. Sarma.</p

    Na+/K+‑ATPase-Targeted Cytotoxicity of (+)-Digoxin and Several Semisynthetic Derivatives

    No full text
    (+)-Digoxin (1) is a well-known cardiac glycoside long used to treat congestive heart failure and found more recently to show anticancer activity. Several known cardenolides (2-5) and two new analogues, (+)-8(9)-β-anhydrodigoxigenin (6) and (+)-17-epi-20,22-dihydro-21α-hydroxydigoxin (7), were synthesized from 1 and evaluated for their cytotoxicity toward a small panel of human cancer cell lines. A preliminary structure-activity relationship investigation conducted indicated that the C-12 and C-14 hydroxy groups and the C-17 unsaturated lactone unit are important for 1 to mediate its cytotoxicity toward human cancer cells, but the C-3 glycosyl residue seems to be less critical for such an effect. Molecular docking profiles showed that the cytotoxic 1 and the noncytotoxic derivative 7 bind differentially to Na+/K+-ATPase. The HO-12β, HO-14β, and HO-3'aα hydroxy groups of (+)-digoxin (1) may form hydrogen bonds with the side-chains of Asp121 and Asn122, Thr797, and Arg880 of Na+/K+-ATPase, respectively, but the altered lactone unit of 7 results in a rotation of its steroid core, which depotentiates the binding between this compound and Na+/K+-ATPase. Thus, 1 was found to inhibit Na+/K+-ATPase, but 7 did not. In addition, the cytotoxic 1 did not affect glucose uptake in human cancer cells, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters

    Cytotoxic and non-cytotoxic cardiac glycosides isolated from the combined flowers, leaves, and twigs of Streblus asper

    No full text
    A new non-cytotoxic [(+)-17β-hydroxystrebloside (1)] and two known cytotoxic [(+)-3'-de-O-methylkamaloside (2) and (+)-strebloside (3)] cardiac glycosides were isolated and identified from the combined flowers, leaves, and twigs of Streblus asper collected in Vietnam, with the absolute configuration of 1 established from analysis of its ECD and NMR spectroscopic data and confirmed by computational ECD calculations. A new 14,21-epoxycardanolide (3a) was synthesized from 3 that was treated with base. A preliminary structure-activity relationship study indicated that the C-14 hydroxy group and the C-17 lactone unit and the established conformation are important for the mediation of the cytotoxicity of 3. Molecular docking profiles showed that the cytotoxic 3 and its non-cytotoxic analogue 1 bind differentially to Na+/K+-ATPase. Compound 3 docks deeply in the Na+/K+-ATPase pocket with a sole pose, and its C-10 formyl and C-5, C-14, and C-4' hydroxy groups may form hydrogen bonds with the side-chains of Glu111, Glu117, Thr797, and Arg880 of Na+/K+-ATPase, respectively. However, 1 fits the cation binding sites with at least three different poses, which all depotentiate the binding between 1 and Na+/K+-ATPase. Thus, 3 was found to inhibit Na+/K+-ATPase, but 1 did not. In addition, the cytotoxic and Na+/K+-ATPase inhibitory 3 did not affect glucose uptake in human lung cancer cells, against which it showed potent activity, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters
    corecore