7 research outputs found

    Chimeric cells of maternal origin do not appear to be pathogenic in the juvenile idiopathic inflammatory myopathies or muscular dystrophy.

    Get PDF
    INTRODUCTION: Microchimeric cells have been studied for over a decade, with conflicting reports on their presence and role in autoimmune and other inflammatory diseases. To determine whether microchimeric cells were pathogenic or mediating tissue repair in inflammatory myopathies, we phenotyped and quantified microchimeric cells in juvenile idiopathic inflammatory myopathies (JIIM), muscular dystrophy (MD), and noninflammatory control muscle tissues. METHOD: Fluorescence immunophenotyping for infiltrating cells with sequential fluorescence in situ hybridization was performed on muscle biopsies from ten patients with JIIM, nine with MD and ten controls. RESULTS: Microchimeric cells were significantly increased in MD muscle (0.079 ± 0.024 microchimeric cells/mm(2) tissue) compared to controls (0.019 ± 0.007 cells/mm(2) tissue, p = 0.01), but not elevated in JIIM muscle (0.043 ± 0.015 cells/mm(2)). Significantly more CD4+ and CD8+ microchimeric cells were in the muscle of patients with MD compared with controls (mean 0.053 ± 0.020/mm(2) versus 0 ± 0/mm(2) p = 0.003 and 0.043 ± 0.023/mm(2) versus 0 ± 0/mm(2) p = 0.025, respectively). No differences in microchimeric cells between JIIM, MD, and noninflammatory controls were found for CD3+, Class II+, CD25+, CD45RA+, and CD123+ phenotypes, and no microchimeric cells were detected in CD20, CD83, or CD45RO populations. The locations of microchimeric cells were similar in all three conditions, with MD muscle having more microchimeric cells in perimysial regions than controls, and JIIM having fewer microchimeric muscle nuclei than MD. Microchimeric inflammatory cells were found, in most cases, at significantly lower proportions than autologous cells of the same phenotype. CONCLUSIONS: Microchimeric cells are not specific to autoimmune disease, and may not be important in muscle inflammation or tissue repair in JIIM

    Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis

    Get PDF
    Background: Despite the important role that microRNAs (miRNAs) play in immunity and inflammation, their involvement in systemic sclerosis (SSc) remains poorly characterized. miRNA-155 (miR-155) plays a role in pulmonary fibrosis and its expression can be induced with interleukin (IL)-1β. SSc fibroblasts have activated inflammasomes that are integrally involved in mediating the myofibroblast phenotype. In light of this, we investigated whether miR-155 played a role in SSc and if its expression was dependent on inflammasome activation. Methods: miR-155 expression was confirmed in SSc dermal and lung fibroblasts by quantitative polymerase chain reaction (PCR). Wild-type and NLRP3-deficient murine fibroblasts were utilized to explore the regulation of miR-155 during inflammasome activation. miR-155-deficient fibroblasts and retroviral transductions with a miR-155 expression or control vectors were used to understand the contribution of miR-155 in fibrosis. Results: miR-155 was significantly increased and the highest expressing miRNA in SSc lung fibroblasts. Its expression was dependent on inflammasome activation as miR-155 expression could be blocked when inflammasome signaling was inhibited. In the absence of miR-155, inflammasome-mediated collagen synthesis could not be induced but was restored when miR-155 was expressed in miR-155-deficient fibroblasts. Conclusions: miR-155 is upregulated in SSc. These results suggest that the inflammasome promotes the expression of miR-155 and that miR-155 is a critical miRNA that drives fibrosis

    NLRP3 Inflammasome is a Target for Development of Broad-Spectrum Anti-Infective Drugs

    No full text
    We describe the molecular mode of action and pharmacodynamics of a new molecular entity (NME) that induces the NLRP3 inflammasome-mediated innate immune response. This innate response reduces the pathogen load in an experimentally induced methicillin-resistant Staphylococcos aureus infection, enhances survival in an experimentally induced Gram-negative bacteremia, and overrides the escape mechanism of an obligate intracellular pathogen, viz. Chlamydia pneumoniae. Furthermore, the NME is more effective than standard-of-care antibiotic therapy in a clinically established multifactorial bacterial infection. Analysis of transcriptional regulation of inflammasome signaling genes and innate/adaptive immune genes revealed consistent and significant host changes responsible for the improved outcomes in these infections. These studies pave the way for the development of first-in-class drugs that enhance inflammasome-mediated pathogen clearance and identify the NLRP3 inflammasome as a drug target to address the global problem of emerging new infectious diseases and the reemergence of old diseases in an antibiotic-resistant form
    corecore