26 research outputs found

    Impact Mechanism and Improvement Strategy on Urban Ventilation, Urban Heat Island and Urban Pollution Island: A Case Study in Xiangyang, China

    Get PDF
    There has been a growing interest in finding mitigation measures for urban heat islands and urban pollution islands that focus mainly on urban landscape mechanisms. However, relatively little research has considered spatial non-stationarity and temporal non-stationarity, which are both intrinsic properties of the environmental system, simultaneously. At the same time, the relevance of and differences between the thermal environment and air pollution has also been rarely discussed, and both issues are of great importance to urban planning. In this study, which is aimed at improving urban ventilation to reduce the urban heat island and urban pollution island effects, an urban ventilation potential evaluation, land surface temperature time-series clustering and air pollution source identification are comprehensively applied to identify the operational areas, compensation areas and ventilation corridors in Xiangyang, China, thus bridging the gap between academic research and urban planning. The specific research areas include: (1) defining the operational areas for urban ventilation corridor planning through an urban ventilation potential evaluation featuring urban morphology indicators, land surface temperature time-series clustering with k-means and an urban air pollution source diffusion analysis via the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and geographically weighted regression (GWR) methods; (2) identifying urban cold islands through land surface temperatures and delimiting the compensation areas in urban ventilation corridor planning; (3) designating urban ventilation corridors through an urban ventilation potential evaluation and computational fluid dynamics (CFD); and (4) improving urban ventilation corridor planning through defining operational areas, compensation areas and ventilation corridors as well as proposing corresponding control measures

    The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones

    No full text
    Local warming induced by rapid urbanization has been threatening residents’ health, raising significant concerns among urban planners. Local climate zone (LCZ), a widely accepted approach to reclassify the urban area, which is helpful to propose planning strategies for mitigating local warming, has been well documented in recent years. Based on the LCZ framework, many scholars have carried out diversified extensions in urban zoning research in recent years, in which urban functional zone (UFZ) is a typical perspective because it directly takes into account the impacts of human activities. UFZs, widely used in urban planning and management, were chosen as the basic unit of this study to explore the spatial heterogeneity in the relationship between landscape composition, urban morphology, urban functions, and land surface temperature (LST). Global regression including ordinary least square regression (OLS) and random forest regression (RF) were used to model the landscape-LST correlations to screen indicators to participate in following spatial regression. The spatial regression including semi-parametric geographically weighted regression (SGWR) and multiscale geographically weighted regression (MGWR) were applied to investigate the spatial heterogeneity in landscape-LST among different types of UFZ and within each UFZ. Urban two-dimensional (2D) morphology indicators including building density (BD); three-dimensional (3D) morphology indicators including building height (BH), building volume density (BVD), and sky view factor (SVF); and other indicators including albedo and normalized difference vegetation index (NDVI) and impervious surface fraction (ISF) were used as potential landscape drivers for LST. The results show significant spatial heterogeneity in the Landscape-LST relationship across UFZs, but the spatial heterogeneity is not obvious within specific UFZs. The significant impact of urban morphology on LST was observed in six types of UFZs representing urban built up areas including Residential (R), Urban village (UV), Administration and Public Services (APS), Commercial and Business Facilities (CBF), Industrial and Manufacturing (IM), and Logistics and Warehouse (LW). Specifically, a significant correlation between urban 3D morphology indicators and LST in CBF was discovered. Based on the results, we propose different planning strategies to settle the local warming problems for each UFZ. In general, this research reveals UFZs to be an appropriate operational scale for analyzing LST on an urban scale

    Behavior of condensed droplets growth and jumping on superhydrophobic surface

    No full text
    Droplets on the superhydrophobic surface can fall off the surface spontaneously, which greatly promote dropwise condensation. This study considers a continuous droplet condensation process including droplet growth and droplet jumping. A droplet growth model considered NCG is developed and droplet jumping is simulated using VOF (Volume Of Fluid) model. Al–based superhydrophobic surfaces are prepared using chemical deposition and etching method. The Al-based superhydrophobic surface has a contact angle of 157°±1° and a rolling angle of 2°±1°. An observation experiment is designed to observe droplet jumping on superhydrophobic surface using a high– speed camera system. The result of droplet growth model shows a good match with experimental data in mid-term of droplet growth. Fordroplet jumping, simulation and experiment results show that droplet jumping of different diameter hasa universality in a non–dimensional form. The jumping process can be divided into 3 stages and droplet vibration is observed

    Students’ Writer Identities and Writing Practice in Tertiary English-Medium Instruction in China

    No full text
    This study adopts a case study approach to examine how students write in English-medium instruction contexts. It also explores why they write in this way from the perspective of writer identity. Four Chinese university students’ EMI course essays, as well as their interview and stimulated recall responses were collected. The analysis results presented three patterns of writer identity: (1) a member, as an EMI writer, of the academic community as the dominant self; (2) a student writer meeting the course requirements as the dominant self; (3) struggling between the two selves. Having different types of writer identities, the students wrote their EMI course essays in different ways. Their writings presented different features in terms of discoursal choice, language form and format. Suggestions for EMI teaching, EMI teacher training and curricula at the university level are provided

    How Do the Multi-Temporal Centroid Trajectories of Urban Heat Island Correspond to Impervious Surface Changes: A Case Study in Wuhan, China

    No full text
    Conspicuous expansion and intensification of impervious surfaces accompanied by rapid urbanization are widely recognized to have exerted evident impacts on the urban thermal environment. Investigating the spatially and temporally varying relationships between Land Surface Temperature (LST) and impervious surfaces (IS) at multiple scales is of great significance for steering IS expansion and intensification. This study proposes an analytical framework to investigate the spatiotemporal variations of LST and its responses to IS in Wuhan, China at both city scale and sub-region scale. The summer LST patterns in 2002–2017 are extracted by Multi-Task Gaussian Process (MTGP) model from raw 8-day synthesized MODerate-resolution Imaging Spectroradiometer (MODIS) LST data. At the city scale, the weighted center of LST (LSTWC) and impervious surface fraction (ISFWC), multi-temporal trajectories and coupling indicators are utilized to comprehensively examine the spatial and temporal dynamics of LST and IS within Wuhan. At the sub-region scale, urban heat island ratio index (URI), impervious surfaces contribution index (ISCI) and sprawl rate are introduced for further quantifying the relationships of LST and IS. The results reveal that IS and hot thermal landscapes expanded by 407.43 km2 and 255.82 km2 in Wuhan in 2002–2017 at city scale. The trajectories of LSTWCs and ISFWCs are visually coherent and both heading to southeast direction in general. At the sub-region scale, the specific cardinal directions with the highest ISCI variations are examined to be the exact directions of ISFWC trajectories in 2002–2017. The results reveal that the spatiotemporal variations of LST and IS are highly correlated at both city and sub-region scales within Wuhan, thus testifying the significance of steering IS expansion and renewal for controlling urban thermal environment deterioration

    Seasonal Variation of the Spatially Non-Stationary Association Between Land Surface Temperature and Urban Landscape

    No full text
    There has been a growing concern for the urbanization induced local warming, and the underlying mechanism between urban thermal environment and the driving landscape factors. However, relatively little research has simultaneously considered issues of spatial non-stationarity and seasonal variability, which are both intrinsic properties of the environmental system. In this study, the newly proposed multi-scale geographically weighted regression (MGWR) is employed to investigate the seasonal variations of the spatial non-stationary associations between land surface temperature (LST) and urban landscape indicators under different operating scales. Specifically, by taking Wuhan as a case study, Landsat-8 images were used to achieve the LSTs in summer, winter and the transitional season, respectively. Landscape composition indicators including fractional vegetation cover (FVC), albedo and water percentage (WP) and urban morphology indicators covering building density (BD), building height (BH) and building volume density (BVD) were employed as potential landscape drivers of LST. For reference, the conventional geographically weighted regression (GWR) and ordinary least squares (OLS) regression were also employed. Results revealed that MGWR outperformed GWR and OLS in terms of goodness-of-fit for all seasons. For the specific associations with LST, all six indicators exhibited evident seasonal variations, especially from the transition season to winter. FVC, albedo and BD were observed to possess great spatial non-stationarity for all seasons, while WP, BH and BD tended to influence LST globally. Overall, FVC exhibited certain positive effect in winter. The negative effect of WP was the greatest among all indicators, although it became the weakest in winter. Albedo tended to influence LST more complicatedly than simple cooling. BD, with a consistent heating effect, was testified to have a greater influence on LST than BH for all seasons. The BH-LST association tended to transfer into positive in winter, while the BVD-LST association remained negative for all seasons. The results could support the establishment of season- and site-specific mitigation strategies. Generally, this study facilitates our understanding of human-environment interaction and narrows the gap between climate research and city management

    The effect of microstructure on self-propelled droplet jumping

    No full text
    The coalescence-induced droplet jumping on superhydrophobic surfaces has attracted considerable attention over the past several years. Most of the studies on droplet jumping mainly focus the droplet jumping on almost flat surfaces or ignore the effect of the microstructure. However, the microstructure often exists on superhydrophobic surfaces, and this effect remains little noticed and poorly understood. In this work, a simulation is carried out to investigate the effect of microstructure on droplet jumping. The microstructure with a similar scale to the jumping droplet on superhydrophobic will affect the jumping direction. The microstructure will improve the jumping velocity and change the jumping direction of the droplet. This work will provide effective guidelines for the design of functional SHSs with controlled and enhanced droplet jumping for a wide range of industrial applications

    Impacts of the evolving urban development on intra-urban surface thermal environment: Evidence from 323 Chinese cities

    Get PDF
    Urban development has significantly modified the surface thermal environment in urban areas. This study provides the first attempt to characterize the urban development imprint on surface thermal environment for 323 cities across the entire country of China, using an intra-urban perspective. Specifically, it investigates the variation of surface thermal environment in terms of land surface temperature (LST) difference triggered by significant urban evolution of intra-urban division containing two primary classes: old urban areas developed by 1992 and new ones expanded in the 1992–2015 period. Under this “old-new” dichotomy, the relationship between urban development and the LST difference is explored through Multi-scale Geographically Weighted Regression (MGWR). Results reveal that urban development is closely related to the difference in LST between old and new urban areas in 2015, which varies from −2.66 °C to 2.46 °C, up to −6.27 °C in western China. 264 cities manifest relatively “cooler” urban environments in the generally larger-sized new urban areas. The seven selected urban development indicators can explain 75% of the variance in the LST difference through MGWR. Among them, the old-new elevation difference, the normalized difference vegetation index (NDVI) difference, and Gini coefficient are found to influence the LST difference in various spatially varying manners. The elevation difference, a generally underestimated nature-driven indicator, is found dominant in explaining the LST difference for 252 cities, among which 216 cities demonstrate higher LSTs in the urban areas with lower elevations. Overall, this study provides valuable information of human-environment interaction across many cities in a generalized way, which complements similar studies at local level, and helps to depict a complete picture of environmental impacts of urban development. The integrated workflow can also be promoted to other periods or other countries to examine the corresponding urbanization imprint on intra-urban surface warming
    corecore