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ABSTRACT

Urban development has significantly modified the surface thermal environment in urban areas. This study
provides the first attempt to characterize the urban development imprint on surface thermal environment
for 323 cities across the entire country of China, using an intra-urban perspective. Specifically, it investi-
gates the variation of surface thermal environment in terms of land surface temperature (LST) difference
triggered by significant urban evolution of intra-urban division containing two primary classes: old
urban areas developed by 1992 and new ones expanded in the 1992-2015 period. Under this “old-new”
dichotomy, the relationship between urban development and the LST difference is explored through
Multi-scale Geographically Weighted Regression (MGWR). Results reveal that urban development is
closely related to the difference in LST between old and new urban areas in 2015, which varies from
—2.66 °Ct0 2.46 °C, up to —6.27 °C in western China. 264 cities manifest relatively “cooler” urban environ-
ments in the generally larger-sized new urban areas. The seven selected urban development indicators can
explain 75% of the variance in the LST difference through MGWR. Among them, the old-new elevation dif-
ference, the normalized difference vegetation index (NDVI) difference, and Gini coefficient are found to in-
fluence the LST difference in various spatially varying manners. The elevation difference, a generally
underestimated nature-driven indicator, is found dominant in explaining the LST difference for 252 cities,
among which 216 cities demonstrate higher LSTs in the urban areas with lower elevations. Overall, this
study provides valuable information of human-environment interaction across many cities in a general-
ized way, which complements similar studies at local level, and helps to depict a complete picture of
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environmental impacts of urban development. The integrated workflow can also be promoted to other pe-
riods or other countries to examine the corresponding urbanization imprint on intra-urban surface

warming.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Urban areas, which are home to more than half of the world's popu-
lation (Seto et al., 2017), are experiencing additional warming com-
pared to the global mean due to the direct impact of urbanization on
local thermal environment (Foley et al., 2005; Stone, 2012; Estrada
et al., 2017). This urbanization-induced local warming exposes urban
dwellers to extra heat stress (Li et al., 2020). Its impact on human health
is further exacerbated given its non-linear interactions with regional
and global climate change (Patz et al., 2005; Manoli et al., 2019). In ad-
dition to health risks, it also poses negative effects on energy consump-
tion, air and water quality and urban ecosystems (Foley et al., 2005;
Grimm et al., 2008).

Existing literature regarding the urbanization-induced local
warming has been mainly following an “urban-rural” dichotomy,
where urban areas are treated as a whole against its non-urban sur-
roundings. The research object of such a dichotomy, the Urban Heat Is-
land (UHI) effect, depicts a phenomenon of urban areas exhibiting
elevated temperature compared to their rural surroundings (Grimm
et al., 2008; Oke et al., 2017). The UHI effect has been extensively
assessed across the globe and testified the “urban-rural” dichotomy as
effective in measuring how much the urban climate has been modified
relative to its background conditions under urbanization (Oke et al.,
2017; Li et al., 2019; Manoli et al,, 2019). Nevertheless, the dichotomy
considers urban areas holistically and thus inevitably ignores the het-
erogeneous temperature patterns within urban areas. In fact, the
intra-urban temperature patterns are intrinsically spatially varying
due to the diversified urban forms and urban functions (Stewart and
Oke, 2009; Liu et al., 2019a) shaped by complicated socio-economic, po-
litical and natural factors. On account of such spatially varying patterns,
the heat stress posing to urban dwellers is also not evenly distributed.
To facilitate better understanding of intra-urban temperature patterns
and the urbanization-temperature relationship, a break away from the
“urban-rural” dichotomy is necessary. Therefore, we may utilize the var-
ious intra-urban patterns within a city as natural laboratories to identify
both problems and solutions to local warming mitigation and adapta-
tion (Jia and Zhao, 2020).

Furthermore, current UHI-based studies are generally local-
dominated, although ensemble or cross-sectional comparison across
large spatial domains is essential in achieving understandings of
common features or fundamental differences (Oke, 1973; Zhou
et al., 2017). According to a recent review summarizing relevant
studies using satellite remotely sensed Land surface temperature
(LST) data during the 1972-2018 period, local studies dominate
64%, while evidently less attention (14%) has been paid to cross-
city comparison at large scales (Zhou et al., 2019). Moreover, the
majority of the existing large-scale studies tend to cover only large
cities, especially in China (Zhou et al., 2014; Wang et al., 2015;
Zhou et al., 2014, 2016; Yao et al., 2017) where unprecedented ur-
banization has been in fact witnessed for all-sized cities. These
large-city dominated studies leaves the worldwide small cities
under-represented, although they hold 43% of the world urban pop-
ulation (Lamb et al., 2019) and are projected to accommodate even
larger proportion in the future (Chai and Seto, 2019). Given the
urban developments in large and small cities can be different (Chai
and Seto, 2019; Lamb et al., 2019; Giineralp et al., 2020), the urban
heat problems and the corresponding driving factors in smaller
cities are not necessarily equivalent to those of large cities and yet

to be explored. Hence, a large-scale study with sufficient all-sized
city samples, which provides a consistent analytical environment
and thus enables generality and difference recognition of urban
heat problems, may shed new light on our understanding of the
urbanization-induced local warming.

Considering the above two limitations of existing UHI-based studies,
an intra-urban perspective aiming at large scales may provide new in-
sights into the urbanization imprint on urban thermal environment. In
fact, intra-urban studies under the field of urban microclimate are
well-documented, with the targeted urban units vary from facets
(10 x 10 m) to local climate zones (2 x 2 km) (Oke et al., 2017).
These studies characterize the unique form of local thermal environ-
ment with a high level of detail and generate knowledge which is crucial
in developing localized policies (Martilli et al., 2020). In addition to
these localized efforts, cross-sectional studies targeting on a large num-
ber of cities are also essential in achieving generalized knowledge for
climatic modelling, urban planning and temperature projection. The
challenge is, to find a universal intra-urban classification scheme suiting
cross-sectional investigation at large scales. A contrast perspective of
old and new urbanized areas divided based on the urban expanding
process may serve for such understanding. The dynamic process of
urban expansion modifies the spatial structure, socio-economic and
ecological functions of urban systems (Lemoine-Rodriguez et al.,
2020), which may collectively lead to the thermal difference between
urban areas expanded in different periods. Overall, the advantage of
such an old-new contrast perspective is twofold. First, it provides an op-
portunity to examine if the urbanization imprint on the thermal envi-
ronment varies along with the process of urban expansion. It is
noteworthy that, the selection of the years to define old and new
urban areas is flexible, hence, any two years witnessing significant ur-
banization phase shifts or policy interventions can be used to explore
the corresponding intra-urban thermal variations and possible differen-
tiation of policy footprints. Second, it is advantageous in cross-sectional
investigation compared to the conventional UHI paradigm. It measures
intra-urban variation that involves no rural reference, thus largely
weakening the interference from the diversified cooling effects and
types of rural land covers which are largely manipulated by background
climates.

Given the geographical and climatic diversities across large spa-
tial domains, it is essential to take spatial non-stationarity into
consideration while exploring how urban development impacts
the old-new thermal variation. Spatial non-stationarity, a common
nature of geographical processes depicting spatially varying rela-
tionships (Goodchild, 2004; Anselin, 2010; Murakami et al., 2018),
has been extensively detected in the urbanization-temperature rela-
tionship based on the pixel level on a city-by-city basis (Su et al.,
2012; Sun et al., 2018; Liu et al., 2019b). Nevertheless, it has been
largely neglected when the relationship is analyzed across large spa-
tial domains (Peng et al., 2011; Clinton and Gong, 2013; Zhou et al.,
2014; Tan and Li, 2015; Yao et al., 2017; Zhou et al., 2017). Excep-
tionally, Li et al. (2017) captured the spatially varying response of
surface UHI (SUHI) to the increase of urban area size across the con-
terminous United States and explicitly applied the geographically
weighted regression (GWR) to measure the spatial heterogeneity.
Numerous studies have also revealed the cooling effect of urban
vegetation to be spatially varying across different climatic condi-
tions (Spronken-Smith and Oke, 1998; Mills et al., 2010; Manoli
et al,, 2019; Yu et al., 2020). In fact, the propensity for anisotropic
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dependence structures and non-stationarity tends to increase as the
scope of the study expands (Finley, 2011), thus making spatial non-
stationarity non-negligible in large-scale investigations. To capture
spatial non-stationarity, the Multi-scale Geographically Weighted
Regression (MGWR), a state-of-the-art geospatial technique, can
be a more effective approach compared to the classic GWR
(Fotheringham et al., 2017; Liu et al., 2019b; Yang et al., 2019a).
Specifically, MGWR is able to allow the processes to operate not
only locally as enabled by GWR, but also at various spatial scales
(Fotheringham et al., 2017). Based on the spatially varying model-
ling results, it provides an opportunity to better understand the na-
ture of geographic processes. Besides, we may identify the most
influential indicators on the temperature difference, and provide
geographically targeted references to mitigate local surface
warming and minimize intra-urban thermal variation.

To fill the gaps above, the present study aims at large scale across the
entire country of China, and investigates the urban development im-
print on intra-urban surface thermal environment for 323 cities. In re-
sponse to this aim, it specifically addresses the following aspects:
(1) assess the intra-urban variation of surface thermal environment in
terms of land surface temperature (LST) difference between old and
new urban areas expanded in specific periods; (2) model the relation-
ship between urban development and the LST difference using MGWR
so that the possible spatial non-stationarity and scale-dependence of
the responsive processes can be captured. This study will provide a
new lens on the urbanization-induced local surface warming with
three unique contributions: (1) large region coverage with numerous
city samples, (2) intra-urban comparative perspective, (3) spatial non-
stationary and scale-dependent relationships. The remainder of this
paper describes the material and methods (Section 2), results
(Section 3), discussion (Section 4), and conclusions (Section 5).

2. Material and methods
2.1. Study area
In this study, 323 cities distributed across the entire country of China

are selected to assess the LST difference between old and new urban
areas in 2015, based on the existence of old urban areas built by 1992,
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the occurrence of urban expansion during the 1992-2015 period, and
also data availability. The 323 cities cover four administrative levels.
From top to the bottom, they cover 4 centrally administrated municipal-
ities (CAMs) of China, 15 sub-provincial cities, 17 provincial capital cit-
ies, and 287 prefecture-level cities. The cities also across all eight climate
zones in China (Liu et al., 2020) (Fig. 1a). Overall, the selected 323 cities
occupy 99.63% of the total urban areas, 98.30% of the population and
99.15% of the economic growth in China in 2015 (NBSC, 2016). Hence,
the study area is adequate to provide a comprehensive sample size to
study the relationship between urban development and urban surface
thermal environment in China. Specifically, a start year of 1992 is se-
lected according to the timing of significant policy intervention, urban-
ization phase shift in China, and land cover data availability. On one
hand, in the 1990s (the third urbanization phase in China) and thereaf-
ter, all-sized cities across the entire country experienced rapid urban ex-
pansion with extensive constructions of new cities, high-tech parks and
industrial development parks (Ye et al., 2006; Wu et al., 2014). Such an
urbanization phase shift may be largely a result of the first urban plan-
ning law in China implemented in 1990, requiring the highly promotion
of small cities, properly development of medium-sized cities, and
expanding control of large cities (Wei, 1994). On the other hand, the
land cover data used in this study, the competitive and extensively
used (Song et al., 2019; Martilli et al., 2020; Liu et al,, 2020) Land
Cover (LC) products provided by the Climate Change Initiative of the
European Space Agency (ESA-CCI LC), are only available since 1992.
Therefore, to seek a compromise, we finally choose 1992 as the starting
year to analyze the corresponding urban development patterns and the
consequent surface thermal variations. During the 1992-2015 period,
radical urban development has been witnessed in the country, as
shown in Fi g. 1b in terms of both urbanization rate and economic
growth.

2.2. Datasets

Multi-source data is used in this study. First, Moderate Resolution
Imaging Spectroradiometer (MODIS) LST product is used to represent
the urban surface thermal environment. Specifically, the MODLT1M, a
monthly mean MODIS/Terra LST product (acquired at 10:30, 1-km-
resolution) provided by the Geospatial Data Cloud of Computer
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Fig. 1. (a) Distributions of the 323 cities; (b) The Gross Domestic Product (GDP) growth and urbanization rate in China from 1978 to 2018 (NBSC, 1979-2019) (the main study year of 2015

and the auxiliary year of 1992 used to divide old and new urban areas are highlighted).
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Network Information Centre of Chinese Academy of Sciences (GSD)
(2015), is used to generate the annual mean LST for 2015. The
MODLT1M product itself is generated based on the daily LST product
of MOD11A1, which is calculated through the generalized split-
window LST algorithm and claimed to be with an accuracy higher
than 1 °C (0.5 °Cin most cases) (Wan, 2008). In fact, the good accuracy,
together with its superior spatial and temporal resolutions, has already
enabled MODIS LST products to be the second most popular LST data
sources (25%) as summarized in a recent review (Zhou et al., 2019).
The proportion can be much higher for large-scale studies. Second,
ESA-CCI LC products (ESA, 2015) are used to identify the urban areas
in China respectively in 1992 and 2015. The “urban” class in the LC
maps was derived using two state-of-the-art global urban footprint da-
tabases (ESA, 2018): the Global Human Settlement Layer (Pesaresi et al,,
2016) and the Global Urban Footprint (Esch et al., 2017). The overall
weighted-area accuracy of the LC maps reaches around 71.7% according
to the user guide. Third, for the indicators representing the multiple
facets of urban development, MODIS MODND1M products (500-m-res-
olution) provided by GSD (2015) are resampled to 1 km and then used
to generate the annual normalized difference vegetation index (NDVI)
data for 2015. Besides, 1 km Grid datasets of Digital Elevation Model
(DEM), GDP and population are also downloaded from the data center
for Resources and Environmental Sciences, Chinese Academy of
Sciences (RESDC) (2015) to represent the topographical and socio-
economic conditions of the cities in 2015. A summary of all links of
data sources used in this study is provided in Table S1 in the
Supplementary material.

2.3. Methodology

2.3.1. The LST difference between old and new urban areas

In this study, an old-new contrast perspective is employed to depict
the intra-urban surface thermal variation based on the urban expanding
process. Specifically, to measure urban development from a landscape
urbanization perspective and further identify urban areas for this
study, the urban development intensity (UDI) (Imhoff et al., 2010;
Zhou et al., 2016) is adopted. UDI is defined as the proportion of the
300 m x 300 m “urban” class in the ESA-CCI LC data in each 1 km x 1 km
pixel (the resolution of the MODIS LST data) (Zhou et al., 2016). The
areas with an UDI over 50% (Imbhoff et al., 2010; Zhou et al., 2016;
Liu et al., 2020) are identified as the urban areas on the 1-km scale
for 1992 and 2015. Further, old urban areas (OUAs) are defined as
urban areas developed by 1992 while new urban areas (NUAs)
refer to the newly expanded urban areas thereafter up until 2015
(Song et al., 2019). Considering the certain de-urbanization phe-
nomenon in China during the study period (Fu et al., 2019), OUAs
are thus a subset of urban areas in 2015 and 1992 (Yao et al,,
2017). Based on the differentiation of OUAs and NUAs, the LST dif-
ference in 2015 is than calculated, as shown in formula 1. It is note-
worthy that, by using LST data of only 2015, other than the LST of
OUAs in 1992 and that of NUAs in 2015, we can avoid the LST vari-
ation between 1992 and 2015 induced by the change of solar ther-
mal radiation, inter-annual climate patterns, and also regional to
global climate change (Liu et al., 2019a). Therefore, the impact of
urban development on the LST difference can be exclusively ana-
lyzed. Besides, the impact of urban renewal on the LST patterns in
old urban areas can also be covered in the analysis.

LSTp = LSToya—LSTua 1)

where LST,, denotes the LST difference between OUAs and NUAS, LSToya
represents the averaged LST value in OUAs, LSTyya is the averaged LST
value in NUAs.

The expanding characteristics of the urban areas and the old-new
LST difference will be further analyzed using multiple division systems
to investigate the corresponding statistical patterns. Specifically, this
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study employs three division systems respectively based on administra-
tive levels, geographical and economic conditions, and background cli-
mate conditions, as shown in Fig. 1a.

2.3.2. Urban development indicators

An initial set of nine urban development indicators are selected
for multicollinearity and significance tests, according to the efficacy
of illustrating intra-urban LST variation and computational
efficiency for large city samples. Old and new urban areas, devel-
oped under differentiated urban dynamics and policy guidance,
may differ in urban area size, landscape composition, landscape con-
figuration, socio-economic levels, and even topography, which col-
lectively give rise to divergent thermal responses in these two
types of areas. Hence, in this study, first, indicators regarding
urban extent, including the log 10 of the final urban area size in
2015 and the urban expansion rate (UER) from 1992 to 2015, are se-
lected given the significant magnifying effect of urban area size on
UHI as revealed in previous studies (Zhou et al., 2013, 2017; Tan
and Li, 2015; Li et al., 2017). Second, this study considers the
widely-recognized warming effect of built-up areas (Zhou et al.,
2014, 2016; Yang et al., 2019a) and cooling effect of vegetation
(Zhou et al., 2014; Liu et al., 2018; Peng et al., 2018). Hence, two
landscape composition indicators, the old-new differences of UDI
and NDVI, are also covered. Third, the global Moran's I (Fan and
Myint, 2014; Wang et al., 2019b) and the Gini coefficient (Liu
et al., 2020), are employed to characterize the inequality level of
landscape urbanization for their computational efficiency over
large regions compared to conventional landscape configuration in-
dicators. The primary difference between these two indicators lies in
the ability of Moran's I to take spatial information into inequality as-
sessment (Wei, 2015). Fourth, elevation (Zhou et al., 2014), a topo-
graphical feature of the urban areas, is also taken into account given
the temperature drop trend with the rising of elevation (Peng et al.,
2020) and also its significant restriction on urban expansion
(Dubovyk et al., 2011; Li et al., 2018). Last, socio-economy develop-
ment, as a key component of urban development and also sources of
anthropogenic heat release (Huang and Cadenasso, 2016; Peng
et al., 2018; Chen et al., 2020; Wang et al., 2020), is also considered.
The description of the nine selected indicators is presented in
Table 1. Multicollinearity and significance tests will run among the
indicators and those passing the multicollinearity threshold mea-
sured by the variance inflation factor (VIF) less than 7.5 (Li et al.,

Table 1
Comprehensive information about the selected indicators.

Categories of
indicators

Indicators Descriptions

Urban  The log 10 of the urban areas size in 2015 (Li et al.,
size_2015 2017).

Urban extent . . .
The proportion of NUAs in the total urban area in

UER 1992 (Long et al., 2018).
UDIDif The difference of the averaged UDI between OUAs
Landscape - and NUAs in 2015.
composition NDVI Dif The difference of the averaged NDVI between OUAs
- and NUAs in 2015.
The global Moran's Is (Anselin et al., 2006) depicting
Moran's the levels of spatial agglomeration of the urban areas
for each city in 2015. It is calculated based on UD]I,
Landscape 1.2015 . .
configuration where those pixels with UDI < 0.5 (rural areas) are
excluded.
Gini 2015 The Gini coefficients (Bendel et al., 1989) depicting
- the levels of UDI inequality within each city in 2015.
Topography Elev_Dif The difference of the averaged elevation between
- OUAs and NUAs in 2015.
CDP_Dif The difference of. the averaged GDP/km? between
Socio-economy - OUAs'and NUAs in 2015. ' .
Pop_ Dif The difference of the averaged Population/km

between OUAs and NUAs in 2015.
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2010) with statistical significance (p < 0.05), will be reserved for
further modelling.

2.3.3. Regression modelling and evaluation

The relationships between LST difference and the selected indicators
are investigated through MGWR using an open-source platform
(https://sgsup.asu.edu/sparc/mgwr). Hence, the spatial non-
stationarity and scale-dependence of the responsive processes can be
effectively captured. The contribution of each indicator to the LST differ-
ence is measured using the corresponding slope coefficients generated
by the model. In addition to MGWR, the ordinary least squares (OLS)
and the classic Geographically Weighted Regression (GWR) are also ap-
plied benchmarking the performance of MGWR. Theoretically, OLS ig-
nores geospatial variations of the relationship between LST difference
and the selected indicators, while GWR brings the variation into consid-
eration, and MGWR further advances the consideration by taking the
scale of the variation into account (Fotheringham et al., 2017). The for-
mulas for OLS and GWR are listed in the Supplementary material, here
we depict how MGWR models the relationship (Fotheringham et al.,
2017):

LSTp; = Bo(us, vi) + ;Bbwk(uh Vi) Xik + & (2)

where (u;,v;) represents the spatial coordinates of location i, X, denotes
the kth indicator at location i, 3o(u; v;) is the intercept value, Bpyi(U;, Vi)

a

0 250 500 1,000
- e Km

%)

=

N

= East Coast (EC)

-E Central China (CC)

? Western China (WC)

g [(Nc ] Northeast China (NC)

&)

C d

10%10° - 10*1%
8 8

x 6 x 6

= 4 = 4
2 ? 2
0 0

CAM  SPC PCC PC EC

€C

Science of the Total Environment 771 (2021) 144810

denotes the kth slope coefficient at observation i under the optimal
bandwidth of bwk, and finally & is the Gaussian error at location i. Spe-
cifically, Bpwi(u;, v;) is estimated through the following formula:
7 T “lor

By vi) = [XTW(ui, vX | XTW (i, vi)Y 3)
where W(u;,v;) represents the weighting matrix allocating the observa-
tions close to the specific location a larger weight in the estimation. In

this study, the fixed Gaussian kernel (Li et al., 2010; Zhao et al., 2018)
is used:

i
wjj = exp 2

where dj; represents the Euclidean distance between location i and j, b
denotes the fixed bandwidth. Specifically, the weighting value will be
set as 1 if location j coincides with a i, and the wy; for the surrounding lo-
cations will decrease gradually according to a Gaussian curve as the dis-
tance dj increases (Fotheringham et al., 2002).

The performances among MGWR, GWR and OLS will be evaluated
using the coefficient of determination (R?), the corrected Akaike infor-
mation criterion (AICc) and the residual sum of squares (RSS) (Zhao
et al,, 2018; Liu et al,, 2019b). A higher R?, together with lower values
of AICc and RSS, indicates a higher fitting degree of the model. The

(4)
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Fig. 2. Urban expansion among the 323 cities in China: (a) spatial distribution of UER and the urban area size in 2015; (b) the urban expanding process from 1992 to 2015 by taking the
Beijing-Tianjin-Hebei region as example; boxplots of the UER (c) at four administrative levels; (d) in the four geographical zones; (e) in the eight climate zones.
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formulas used to calculate the AICc and RSS are listed in the Supplemen-
tary Material.

3. Results
3.1. Urban expansion

Urban expansion, the basis for identifying old and new urban areas
in this study, is firstly analyzed to generate a basic understanding of
urban development in terms of landscape urbanization. Remarkable
urban expansion is observed with significant spatial unevenness
(Fig. 2a). The UER for the 323 cities ranges from 38% to 6300% with an
average of 388%, indicating a larger size of new urban areas for the
vast majority of cities. Generally, cities with higher administrative levels
manifest smaller averaged magnitudes of urban expansion (Fig. 2c).
Geographically, small-sized cities in the mid-west and large cities
along the north east coast exhibit the largest expansion magnitudes,
while northeast China experienced evidently less urban expansion
(Fig. 2a, d). In regard to the eight climate zones in China (Fig. 2e), it is
interesting to observe that many cities with high UER are located in
moderate temperature zones such as the warm temperature zone and
middle subtropics zone.

3.2. The LST difference between old and new urban areas

The LST difference between OUAs and NUAs is observed with signif-
icant regional discrepancy (Fig. 3). It covers a wide range from —2.66 °C
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to 2.46 °C except for the extreme value of —6.27 °C for Nyingchi in the
Tibet Autonomous Region, and the mean value reaches 0.51 °C. Most cit-
ies (82%) exhibit higher LSTs in OUAs. Generally, larger positive LST dif-
ferences are mainly observed in the North China Plain, while larger
negative values tend to occur more sparsely in western and central
China. The boxplot (Fig. 3b) further reveals that, contrary to the patterns
of UER (Fig. 2c), generally cities with higher administrative levels dem-
onstrate larger averaged LST differences, except for prefecture-level cit-
ies. It is interesting to notice that the LST differences for sub-provincial
cities are more concentrated in distribution than those for provincial
capital cities (Fig. 3b), although the two types of cities share equivalent
sample sizes. Great spatial unevenness is also observed based on the
four geographical zones (Fig. 3¢). Among them, northeast China which
expanded the least (Fig. 2d) manifests the largest averaged LST differ-
ence (0.74 °C). In regard to the eight climate zones, cities in the warm
temperature zone demonstrate the highest averaged LST difference
(0.72 °C) and also the largest value range (Fig. 3d). Combined with the
findings in Section 3.1, many cities located in the warm temperature
zone are either growing radically with higher UERs (Fig. 2e) or also pro-
ducing larger LST differences (Fig. 3d).

3.3. The spatial patterns of the selected indicators

Seven indicators are finally selected after the multicollinearity
(VIF < 7.5, actually all<5.0) and significance (p < 0.05) tests, including
UER, NDVI_Dif, Moran's 1_.2015, Gini_2015, Elev_Dif, GDP_Dif and
POP_Dif. Among them, UER has been preliminarily analyzed in
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Fig. 3. (a) The LST difference among the 323 cities in China; boxplots of the LST difference (b) at four administrative levels; (c) in the four geographical zones; (d) in the eight climate zones.
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Section 3.1 given its importance on the identification of old and new a few cities. Generally, negative values are mainly observed in western
urban areas. Here, we present the distribution patterns of the remaining China, signifying better socio-economic development in newly
six indicators (Fig. 4). The averaged NDVI for NUAs is larger than that of expanded urban areas in this under-developed mountainous region.
OUAs for most cities (92%) (Fig. 4a). Among them, larger negative NDVI

difference, similar to the larger positive LST difference in Fig. 2, tends to 3.4. Performance of MGWR

mainly occur in cities located in the warm temperature zone. In con-

trast, larger positive NDVI difference primarily distributes in western MGWR is superior to OLS and GWR in terms of goodness-of-fit in
China. As for the global Moran's I, 94% of the cities demonstrate positive modelling the relationship between LST difference and the selected
values, meaning significant spatial agglomeration patterns of the urban urban development indicators, as evaluated by the three indices
areas. The majority of the cities with greater agglomeration patterns are (Table S2 in the Supplementary material). All indices improve evi-
located in the warm temperature zone (Fig. 4b), to a large extent resem- dently from OLS to GWR and ultimately reach the optimal regres-
bling to the clustering pattern of larger positive LST differences (Fig. 2). sion fit of MGWR. For instance, the R? of MGWR reaches a high
The spatial pattern of the Gini coefficient is somewhat opposite with level of 0.75, which is slightly higher than that of MGWR (0.70)
that of the global Moran's I on the national scale, although they are and way surpasses that of OLS (0.35). This means that spatial het-
also similar for a few cities, such as those located in the southeast erogeneity is a non-negligible factor for capturing the relationship
coast. Generally, the more to the west, the greater regional inequality between urban development and intra-urban surface thermal envi-
of landscape urbanization as witnessed with higher values of the Gini ronment. Besides, it is important to encode multi-scale information
coefficient. In terms of elevation, most cities (59%) reveal higher values in modelling urbanization-temperature relationship.

in NUAs than OUAs. Larger difference, whether positive or negative, are As shown in terms of optimal bandwidths optimized by MGWR in
observed in western China which is dominantly mountainous areas Table 2, the relationships between LST difference and the selected indi-
with complicated topographical conditions. Specifically in the Tibet cators are modeled at different spatial scales. It is clearly that, compared
Autonomous Region, Nyingchi (2.179 km) and Shannan (1.861 km) to GWR which allocates a consistent scale (382.55 km) to all processes,
demonstrate extreme values of elevation difference above 1 km. These MGWR successfully identifies the individual scales specific to each pro-
two cities developed part of their new urban lands in the southern cess. Specifically, the relationships between LST difference and
area with evident low altitudes, thus resulting in the extremely larger NDVI_Dif, Gini_2015, and Elev_Dif exhibits spatial non-stationarity at
elevation differences. In regard to socio-economic conditions, most cit- various local scales (optimal bandwidths of 207.51 km, 412.88 km,
ies exhibit higher levels in OUAs in terms of both GDP (90%) and popu- and 158.47 km, respectively). On the contrary, UER, Moran's I_2015,
lation (90%) per square kilometer. These two indicators share similar GDP_Dif and Pop_ Dif tend to correlate with the LST difference in consis-
patterns on the national scale, while discrepancies also exist locally for tent global manners across China.
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Fig. 4. The spatial distributions of the six indicators. (a) NDVL_Dif, (b) Moran's 1_2015, (c) Gini_2015, (d) Elev_Dif, (e) GDP_Dif, (f) POP_Dif.
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Table 2
Optimal bandwidths and slope coefficients of the selected indicators identified by MGWR.

Indicators Optimal bandwidths Slope coefficients
Mean STD Min Max

UER 9077.10 —0.09 0.00 —0.09 —0.09
NDVI_Dif 207.51 —0.26 0.42 —2.40 0.67
Moran's [_2015 9077.33 0.18 0.00 0.18 0.18
Gini_2015 412.88 —0.24 0.19 —0.83 1.02
Elev_Dif 158.47 —0.68 2.77 —5.31 32.68
GDP_Dif 9073.59 —0.18 0.00 —0.18 —0.18
Pop_ Dif 9077.33 0.11 0.00 0.11 0.11

Note: bandwidth larger than 4539 km, the maximum distance between any two cities, is
identified as global scale.

3.5. The relationships between LST difference and the urban development
indicators

The relationships between LST difference and the seven indicators
are further explored through the slope coefficients generated by
MGWR (Table 2). Generally, although the relationships with NDVI_Dif,
Gini_2015, and Elev_Dif demonstrate spatially varying patterns across
China, we can still conclude that, for most cities, Elev_Dif exhibits the
most significant correlation with a mean coefficient of —0.68, followed
by NDVI_Dif (—0.26) and Gini_2015 (—0.24). Specifically, Elev_Dif
dominates explaining the LST difference for 252 cities (78%), among
which 216 cities demonstrate negative relationships between LST dif-
ference and Elev_Dif. Moran's 1_2015 and GDP_Dif tend to influence
the LST difference in a consistent degree of 0.18 although in the opposite
ways. In comparison, the relationships with Pop_ Dif (0.11) and UER
(—0.09) are the weakest.

The spatially varying slope coefficients of NDVI_Dif, Gini_2015, and
Elev_Dif are further analyzed (Fig. 5). NDVI_Dif is negatively correlated
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with the LST difference in 262 cities (81%). That is, the urban areas with
more abundant vegetation manifest a relatively lower average LST. Nev-
ertheless, for the other 61 cities, which are mainly located in the tem-
perature zone, north and middle subtropics zones, the NDVI_Dif
manifests a positive relationship on the LST difference. Again, a boxplot
analysis provides aggregated pattern at the climate zone level (Fig. 5d).
The averaged slope coefficients demonstrate an overall inverted U-
shape, indicating larger negative impacts from NDVI_Dif tend to occur
in regions with higher or cooler temperature levels. In regard to
Gini_2015, larger Gini produces smaller LST difference for the majority
of the cities, except for the 6 cities located in the Qinghai-Tibet Plateau
Zone, which are normally with sparsely distributed urban areas. Boxplot
analysis (Fig. 5e) further reveals that, except for the Qinghai-Tibet
Plateau Zone, regions with cooler background demonstrate greater neg-
ative impacts of Gini_2015. In terms of Elev_Dif, its decrease is related
with an elevated LST difference for 263 cities (81%). That is, the urban
areas with higher elevations exhibit a relatively lower average LST. Nev-
ertheless, the relationship is contrast for the remaining 60 cities located
as in clusters across China (Fig. 5f).

We further detail the relationships modeled by MGWR for 21 urban
agglomerations in China (Fig. 6a). The urban agglomerations, identified
on the prefecture city-level referring to public documents and previous
studies (Long et al., 2018), account for 65% of the total urban areas, 70%
of national GDP and 49% of the population in China in 2015. They are
ranked from 1 to 21 by their final urban area sizes in 2015. All urban ag-
glomerations expanded rapidly during the study period (Fig. 6b).
Among them, 18 urban agglomerations exhibit higher averaged LSTs
in OUAs, with 14-Central Plains (1.72 °C), 20-Beijing-Tianjin-Hebei
(1.21 °C), and 10-Guanzhong Plain (1.14 °C) leading the LST differences
(Fig. 6¢). The averaged slope coefficients generated by MGWR further
reveal Elev_Dif to be the dominant factor driving the LST differences
for these three urban agglomerations, followed by the averaged
Gini_2015 and NDVI_Dif (Fig. 6d, e, Table 2). In contrast, 3 urban
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Fig. 5. The spatially varying slope coefficients of the indicators: (a) NDVI_Dif, (b) Gini_2015, and (c) Elev_Dif; and the corresponding boxplots based on the eight climate zones:
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Fig. 6. (a) The 21 urban agglomerations in China; the bar graphs for the averaged (b) urban area sizes of old and new urban areas and (c) LST difference; the bar graphs for the averaged
slope coefficients of (d) NDVLDif, (e) Elev_Dif and (f) Gini_2015. The x axis following the sequence of 1-21 depicts the serial numbers of the 21 urban agglomerations. Note: 1. Jiuquan-
Jiayuguan-Yumen, 2. Northern Ningxia, 3. Beibu Gulf, 4. Northern Tianshan Mountain, 5. Central Yunnan, 6. Central Shanxi, 7. Changsha-Zhuzhou-Xiangtan, 8. Northern Jiangxi, 9. Hohhot-
Baotou-Ordos-Yulin, 10. Guanzhong Plain, 11. Greater Wuhan, 12. Central Anhui, 13. Harbin-Changchun, 14. Central Plains, 15. Eastern Fujian, 16. Chengdu-Chongqing, 17. Liaodong Pen-
insula, 18. Shandong Peninsula, 19. Guangdong-Hong Kong-Macao Greater Bay, 20. Beijing-Tianjin-Hebei, 21. Yangtze River Delta.

agglomerations, including 4-Northern Tianshan Mountain, 6-Central
Shanxi, and 2-Northern Ningxia, manifest higher LSTs in NUAs. Among
them, 4-Northern Tianshan Mountain exhibits the largest positive ele-
vation difference (93.29 m) among the 21 urban agglomerations
(Table S3 in the Supplementary material). The larger elevation in
OUAs may have greatly contributed to its lowered LST.

4. Discussion

This study investigates the intra-urban LST variation at large scale
using a comparative perspective of old and new urban areas, and ana-
lyzes the impacts from urban development through MGWR. It covers
323 Chinese cities with diversified urban sizes, economic levels and cli-
matic contexts. Hence, in contrast to the previous SUHI-based studies
concerning only big cities (Zhou et al., 2016; Yao et al., 2017), the
under-presented small- and medium-sized cities in China, which are
developing rapidly but with lagging governance capacity (Lamb et al.,
2019; Giineralp et al., 2020), can also benefit from the generalized
knowledge and city-specific characteristics investigated in this study.

4.1. Patterns of the old-new LST difference

Uneven difference in LST between old and new urban areas is ob-
served across the 323 Chinese cities. Most of them (82%) were with

lower LSTs in the newly developed urban areas in 2015, which partly
deciphers why declining trends of surface UHII (SUHII) were observed
in part of Chinese cities, even under global warming (Zhou et al,,
2016; Liu et al.,, 2020). The LST difference varies significantly across
the 323 cities (Fig. 3) and 21 urban agglomerations (Fig. 6). Combined
with the divisional statistical analysis, the regional discrepancy is collec-
tively affected by cities' administrative levels (Fig. 3b), geographic and
economic conditions (Fig. 3c), and also macroscopic climatic back-
grounds (Fig. 3d). For example, the 15 sub-provincial cities manifest a
more concentrated distribution of LST difference in contrast to the 17
provincial capital cities (Fig. 3b). This may be ascribed to the relatively
more consistent urban development trajectories among sub-provincial
cities, as controlled by factors such as similar geographical conditions
and accordant governance in steering climate-conscious urban develop-
ment. Besides, it may also be partly contributed by its less variability of
background climatic conditions (Fig. 3a).

More specifically, in addition to the impacts of climatic backgrounds,
the regional discrepancy may be directly related to the diversified char-
acteristics of urban development across China, for instance, the uneven
urban expansion (Tan and Li, 2015; Li et al.,, 2017) and the associated
landscape and socio-economic differences (Yao et al., 2017) between
old and new urban areas. Here, we cast a glance at the linkage between
the LST difference (Fig. 3a) and the selected indictors (Fig. 4). Appar-
ently, the large cities in the North China Plain exhibiting noticeably
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“cooler” new urban areas are largely located in the warm temperature
zone characterized with moderate temperature conditions across
China. They are generally associated with more vegetation coverage
(Fig. 4a) and less socio-economic activities (Fig. 4e-f) in these areas,
and also higher levels of urban land agglomeration (Fig. 4b) for the
whole city. While the numerous cooler cities in western China showing
evidently “hotter” new urban areas (Fig. 3a) are mainly small-sized with
remarkable expansion rates (Fig. 2a), which may be partly a product of
policy invention since the early 1990s (Section 2.1). The emerging “hot-
ter” new urban areas for these fast-growing small cities highlight the in-
justice of most existing studies to only focus on larger cities in China
while exploring the thermal environmental impacts of urban expansion
(Wang et al., 2015; Zhou et al., 2014, 2016; Yao et al., 2017). In fact,
small Asian cities, one of the most under-represented segments (di-
vided according to region and city size across the globe) in urban cli-
mate studies, are projected to share the largest proportion of global
urban population by 2030 (Lamb et al., 2019). Hence, it is urgent to gen-
erate comprehensive knowledge of urbanization-temperature interac-
tions for these small cities, so that decision-makers can develop
strategies to cope with the existing urban heat problems and steer the
future massive urban expansion into more climate-friendly.

4.2, Impacts of urban development on the LST difference

MGWR further reveals the relationships between LST difference and
the selected urban development indicators to operate at diverse spatial
scales. Overall, four different operating scales are identified, including
three local scales for urban elevation difference, NDVI difference, and
Gini coefficient (Table 2; Fig. 5), and a global scale for EUR, Moran's I,
GDP and population densities (Table 2). Such a result, on one hand, en-
dorses the superiority of MGWR in simultaneously capturing both spa-
tial non-stationarity and scale-dependence of geographical processes.
On the other hand, it indicates that, in addition to the observational
scale investigated in previous studies (Luan et al., 2020), operational
scale is also an important issue to be considered in investigating the
urbanization-temperature relationship. In fact, the significance of scale
has been extensively emphasized in all sciences (Levin, 1992; Sayre,
2005, 2009), especially in geographical contexts (Goodchild, 2001,
2004; Fotheringham et al., 2017; Murakami et al., 2018). Nature and
human systems are simultaneously controlled by numerous processes
operating on multiple spatial scales (Turner et al., 1989; Levin, 1992;
Sayre, 2005, 2009), so is the human-environment interactions as
explored in this study. Overall, the scale-dependent feature of the pro-
cesses enables us a better understanding of the urban development-
LST difference relationships. Besides, those relationships operating at
local scales can also help decision-makers in generating geographically
targeted references, so as to mitigate local surface warming and mini-
mize intra-urban thermal variation.

Specifically, for the three relationships operating at local scales, the
spatially varying patterns can be attributed to the diversified land sur-
face characteristics regulated by non-uniform urban development pat-
terns and complex natural environments. For instance, the spatially
varying impacts of the NDVI difference (Fig. 5a) may be collectively
induced by diversified urban greenery characteristics and complex
background climatic conditions. On one hand, the cooling effect of veg-
etation is locally controlled by its land surface properties of type, size
and shape (Ouyang et al.,, 2020; Yu et al., 2020), and also the irrigation
regime (Spronken-Smith and Oke, 1998), which cannot be fully cap-
tured by any single vegetation indicator, such as NDVI. Therefore, the
other properties of vegetation neglected by NDVI would give rise to a
spatially varying cooling effect. On the other hand, the cooling effect is
also regulated by macroscopic climatic backgrounds (Spronken-Smith
and Oke, 1998; Manoli et al., 2019; Martilli et al., 2020). For instance,
governed by physical mechanisms such as the increase in vapor pres-
sure deficit, well irrigated vegetation can be more effective in cooling
urban areas in dry climates compared to humid ones (Yu et al., 2018;
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Manoli et al., 2019; Martilli et al., 2020). Hence, in this study, a stronger
negative impact of NDVI difference (Fig. 5a) is captured for the majority
of cities located in West China where the climate is generally character-
ized with low precipitation (Song et al., 2019). The spatially varying
impact of the old-new elevation difference (Fig. 5b, c) may also be
conjointly contributed by multiple factors. For instance, the differenti-
ated amount of solar radiation received in different climate zones, the
other topographical characteristics (i.e., slope and aspect) (Peng et al.,
2020) not covered in this study, and also the diversified urban ventila-
tion conditions partly regulated by complex urban topography (Kitous
etal., 2012; He et al., 2020). In regard to the Gini coefficient, in contrast
to the globally consistent impact of the global Moran's |, it correlates
with the LST difference in a spatially varying manner. Such a spatially in-
consistent impact on the LST difference may be largely a consequence of
the differentiated spatial patterns of urban areas under identical in-
equality levels of landscape urbanization.

The significant impact of elevation on the “cooler” new urban areas,
as revealed by MGWR, sheds new light on our understanding of the
urbanization-temperature relationship. First, it highlights the limita-
tions of previous studies in ignoring the influence of topography and
simply ascribing the descending trends of SUHII to the improved
urban greenery management (Zhou et al., 2016; Liu et al., 2020) or
lower development intensity (Zhou et al., 2016). That is to say, the ne-
glect of nature-driven influence, such as elevation, will lead to overesti-
mation of the efficacy of human-driven interventions in mitigating
urban heat problems and facilitating urban sustainability. In fact, higher
elevation is significantly correlated with lower LST (Khandelwal et al.,
2018; Peng et al., 2020). It also normally acts as a restrictive factor to
urban expansion (Li et al., 2018). Nevertheless, unlike the old urban
areas, new urban areas can be built at higher elevation with sufficient fi-
nancial support and technology innovation (Dubovyk et al., 2011; Li
etal,, 2018) and thus revealing relatively lower LSTs. Second, the signif-
icant impact of elevation also indicates that, it is crucial for LST/ SUHI
projections under future urban development scenarios to take into ac-
count the variation of elevation, which has been largely ignored in pre-
vious efforts using statistical models (Huang et al., 2019). Third,
compared to previous studies showing non-significant impact of topog-
raphy on SUHI based on limited city samples (Zhou et al., 2014), the
contrary finding revealed in this study endorses the superiority of
using large city samples in investigating the urbanization-temperature
relationship.

The contrary relationships between LST difference and the GDP and
population indicators (Table 2) also highlight the complexity of urban
systems. Generally, higher LST tends to occur in urban areas character-
ized with relatively higher population density but lower economic
levels. This indicates that the evolving urban dynamics have brought
about a complex coupling relationship among LST, local social status,
and economic levels. Previous studies have ascribed such a complex re-
lationship to the LC modification induced by the urbanization process,
primarily in terms of vegetation cover and building density (Jenerette
et al,, 2007; Huang and Cadenasso, 2016). Specifically, large population
always comes along with intense urban development and limited space
for urban greening, thus undoubtedly leading to an elevated LST
(Jenerette et al., 2007; Huang and Cadenasso, 2016; Peng et al., 2018).
Besides, it is also associated with more anthropogenic heat release
which further intensifies the local urban heat problems (Yin et al.,
2018; Yang et al., 2019b; Chen et al., 2020). As for the urban areas
with superior economic conditions (higher incomes), they are intrinsi-
cally correlated with more vegetation cover and thus decreased LST
levels (Jenerette et al., 2007; Huang and Cadenasso, 2016).

4.3. Implications and limitations
The old-new LST variation indicates that cities are facing both oppor-

tunities and challenges for urban sustainability. On one hand, the
emerging “cooler” new urban areas confirm the great possibility of
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facilitating climate-conscious urban development through urban gover-
nance. For instance, to implement more stringent urban greening poli-
cies in newly expanded urban areas. Taking Beijing as an example, the
relatively “cooler” new urban areas (Fig. 3a) can be partly attributed
to its regulation issued in 2010 requiring the proportion of vegetation
cover to be no less than 30% in all newly built residential areas (Wang
et al., 2019a). In fact, the more abundant vegetation in new urban
areas is observed in 92% of the cities across China (Fig. 4a), which may
be collectively contributed by the favorable nature endowment and
also positive policy-driven interventions. In the future, knowledge of
urban climate science can be progressively translated into decision-
making through approaches such as spatial planning and urban design
(Mills et al., 2010; Georgescu et al., 2014). Hence, the massive urban
land projected in the future, especially in Africa and Asia (Gao and
O'Neill, 2020), can be steered into more climate-friendly. It is notewor-
thy that, behind the “cooler” new urban environment, there is usually
lower development density associating with longer commuting dis-
tances (Yue et al.,, 2019), and thus increased greenhouse gas (GHG)
emissions (Cremades and Sommer, 2019) and ultimately elevated cli-
mate warming on the global scale. Hence, an integrated policy frame-
work is urgently needed to incorporate local warming mitigation with
GHG emission restriction, so that synergies rather than trade-offs be-
tween the two aspects can be possibly maximized (Urge-vorsatz et al,,
2018). Furthermore, we may achieve the 13th Sustainable Development
Goal (climate action) emphasized in the 2030 Agenda for Sustainable
Development (Fuso Nerini et al., 2019).

On the other hand, the relatively “hotter” old urban areas also indi-
cate that the population living or working there (Fig. 4f) is exposed to
more severe urban heat problems, especially for the numerous cities lo-
cated in the warm temperature zone (Fig. 3a; 3d). The elevated LST
would compel the urban dwellers into higher threat of human health,
especially during heat waves (Patz et al., 2005). Such a thermal inequal-
ity emphasizes the necessity to minimize intra-urban thermal environ-
mental inequality and more efforts should be made to cool the relatively
“hotter” old urban areas for the vast majority of cities in China. Never-
theless, old urban areas are usually high-density areas with limited
heat-adaptive capacity, thus demanding more detailed and flexible pol-
icies, such as vertical greenery (green facades and green roofs) (He,
2019; Liu et al., 2020) and “Plant Where Possible” (Wang et al.,
2019a). For instance, the urban renewal projects in Shanghai has suc-
cessfully embedded scattered green patches among the high-rise build-
ings since 2005, thus effectively attenuated the heat stress in old urban
centers (Wang and Shu, 2020) and reduced its old-new LST difference
(Figs. 3a, 4a).

The spatially varying impacts of the selected indicators on the LST
difference, especially for the NDVI difference, can provide geographi-
cally targeted references for mitigating local surface warming and min-
imizing intra-urban thermal variation. For instance, the relatively
weaker cooling, and even warming effect of vegetation as observed in
humid areas, including south central and northeast China (Fig. 5a), ne-
cessitate more stringent urban greenery planning and management
for these areas. Namely, be cautious with the type, size, shape, connec-
tivity, and complexity of green spaces so as to achieve the best cooling
effect (Yu et al., 2020). This is especially true for northeast China
where higher LSTs tend to occur in old urban areas (Fig. 3a) which are
normally with limited heat-adaptive capacity. Generally, tree-covered
urban green vegetation can be a recommendable effective approach
(Yu et al., 2018, 2020). While for the western cities characterized by
dry climate, the stronger cooling effect of vegetation (Fig. 5a) denotes
that we may be able to apply less urban green space to achieve the op-
timal cooling effect, as long as water supply can be guaranteed for irri-
gation (Yu et al, 2020). As for the impacts of elevation, it is
noteworthy that, northeast and central China experience stronger influ-
ences. Hence, it is essential for studies targeted on these areas to cover
elevation into consideration while investigating the contributors of sur-
face local warming or projecting LST/ SUHI under future urban

11

Science of the Total Environment 771 (2021) 144810

development scenarios. The spatially varying impacts of the Gini
coefficient also indicate that, generally northern cities should be more
concerned about landscape urbanization inequality to minimize intra-
urban thermal variation.

There are also several aspects that may be improved in future work.
First, uncertainties exist in the identification of old and new urban areas.
This study employs a competitive LC product, the widely used ESA-CCI
LC (300-m-resolution), to identify the urban areas for 1992 and 2015.
Nevertheless, LC datasets generated by different data sources with di-
versified resolutions may derive urban areas with certain discrepancies.
Second, the selected seven indicators interpret 75% of the variance in
the LST difference through MGWR, nevertheless, they are still insuffi-
cient to depict the complex and geographically variable urban systems.
Urban expansion is associated with the evolution of urban development
in terms of both urban form and urban function. The evolution varies
from the materials used in construction to development priorities.
Hence, in the future, more detailed and comprehensive indicators
depicting the complete picture of urban systems should be involved.
For instance, we may directly use the indicator of anthropogenic heat
emission (Chen et al., 2020; Wang et al., 2020), other than its socio-
economic drivers, to investigate the urban development-surface ther-
mal environment relationship. Third, this study focuses on the daytime
patterns using annually averaged daytime LST data, nevertheless, the
LST difference and the corresponding relationships with influencing fac-
tors might vary both diurnally and seasonally. Therefore, future works
can be devoted to investigate the diurnal and seasonal patterns of the
LST difference and the old-new thermal inequality reshaped by the di-
urnal population dynamics.

5. Conclusion

This study provides the first attempt to capture the intra-urban var-
iation of surface thermal environment triggered by significant urban dy-
namics on large scales. The main findings can be summarized as follows:
(1) urban development is closely accompanied by the presence of intra-
urban LST difference between conventional old urban centers and
newly expanded urban areas in Chinese cities. The LST difference varies
significantly across China, and 82% of the cities manifest relatively
“cooler” urban environments in the generally larger-sized new urban
areas. (2) The selected indicators can interpret 75% of the variance in
the LST difference through MGWR. Among them, the old-new urban el-
evation difference, NDVI difference, and Gini coefficient, which rank as
the three leading influential indicators, exhibit spatially varying rela-
tionships with the LST difference across China, thus endorsing the supe-
riority of MGWR in capturing multi-scale spatial heterogeneity in
environmental responsive processes. Specifically, the elevation differ-
ence, which has been largely neglected or underestimated in long-
term trend analysis of LST/SUHII, is found dominant in explaining the
LST difference for 252 cities (78%), among which 216 cities demonstrate
higher LSTs in the urban areas with lower elevations. In contrast, the
less evident relationships with UER, Moran's I, and the old-new differ-
ences of GDP and population densities are globally consistent. Overall,
the findings provide valuable generalized information for climatic
modelling and temperature projection. The city-specific characteristics
investigated in this study can also benefit all-sized cities in China in de-
veloping urban heat mitigation strategies. In the future, more efforts can
be devoted to digging the underlying mechanism of the old-new LST
difference using more sophisticated indicator system, and assessing
both the diurnal and seasonal patterns of the old-new thermal
inequality.
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