3 research outputs found

    The sequences of 150,119 genomes in the UK Biobank

    Get PDF
    Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data(1,2). Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank(3). This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation

    A meta-analysis uncovers the first sequence variant conferring risk of Bell’s palsy

    Get PDF
    We thank all participants in this study for their valuable contribution to research. We further thank our colleagues who contributed to the data collection, phenotypic characterization of clinical samples, genotyping and analysis of the whole-genome association data. This research has been conducted using the UK Biobank Resource under Application Number 24898. We want to acknowledge the participants and investigators of the FinnGen study. The financial support from the European Commission to the NeuroPain project (FP7#HEALTH-2013-602891-2) and painFACT project (H2020-2020-848099), and the National Institutes of Health (R01DE022905) is acknowledged. Publisher Copyright: © 2021, The Author(s).Bell’s palsy is the most common cause of unilateral facial paralysis and is defined as an idiopathic and acute inability to control movements of the facial muscles on the affected side. While the pathogenesis remains unknown, previous studies have implicated post-viral inflammation and resulting compression of the facial nerve. Reported heritability estimates of 4–14% suggest a genetic component in the etiology and an autosomal dominant inheritance has been proposed. Here, we report findings from a meta-analysis of genome-wide association studies uncovering the first unequivocal association with Bell’s palsy (rs9357446-A; P = 6.79 × 10−23, OR = 1.23; Ncases = 4714, Ncontrols = 1,011,520). The variant also confers risk of intervertebral disc disorders (P = 2.99 × 10−11, OR = 1.04) suggesting a common pathogenesis in part or a true pleiotropy.Peer reviewe

    Variants at the Interleukin 1 Gene Locus and Pericarditis

    No full text
    Importance: Recurrent pericarditis is a treatment challenge and often a debilitating condition. Drugs inhibiting interleukin 1 cytokines are a promising new treatment option, but their use is based on scarce biological evidence and clinical trials of modest sizes, and the contributions of innate and adaptive immune processes to the pathophysiology are incompletely understood. Objective: To use human genomics, transcriptomics, and proteomics to shed light on the pathogenesis of pericarditis. Design, Setting, and Participants: This was a meta-analysis of genome-wide association studies of pericarditis from 5 countries. Associations were examined between the pericarditis-associated variants and pericarditis subtypes (including recurrent pericarditis) and secondary phenotypes. To explore mechanisms, associations with messenger RNA expression (cis-eQTL), plasma protein levels (pQTL), and CpG methylation of DNA (ASM-QTL) were assessed. Data from Iceland (deCODE genetics, 1983-2020), Denmark (Copenhagen Hospital Biobank/Danish Blood Donor Study, 1977-2022), the UK (UK Biobank, 1953-2021), the US (Intermountain, 1996-2022), and Finland (FinnGen, 1970-2022) were included. Data were analyzed from September 2022 to August 2023.Genotype. Main Outcomes and Measures: Pericarditis. Results: In this genome-wide association study of 4894 individuals with pericarditis (mean [SD] age at diagnosis, 51.4 [17.9] years, 2734 [67.6%] male, excluding the FinnGen cohort), associations were identified with 2 independent common intergenic variants at the interleukin 1 locus on chromosome 2q14. The lead variant was rs12992780 (T) (effect allele frequency [EAF], 31%-40%; odds ratio [OR], 0.83; 95% CI, 0.79-0.87; P = 6.67 × 10-16), downstream of IL1B and the secondary variant rs7575402 (A or T) (EAF, 45%-55%; adjusted OR, 0.89; 95% CI, 0.85-0.93; adjusted P = 9.6 × 10-8). The lead variant rs12992780 had a smaller odds ratio for recurrent pericarditis (0.76) than the acute form (0.86) (P for heterogeneity = .03) and rs7575402 was associated with CpG methylation overlapping binding sites of 4 transcription factors known to regulate interleukin 1 production: PU.1 (encoded by SPI1), STAT1, STAT3, and CCAAT/enhancer-binding protein β (encoded by CEBPB). Conclusions and Relevance: This study found an association between pericarditis and 2 independent sequence variants at the interleukin 1 gene locus. This finding has the potential to contribute to development of more targeted and personalized therapy of pericarditis with interleukin 1-blocking drugs.</p
    corecore