142 research outputs found

    Evaluation of multicomponent recombinant vaccines against Actinobacillus pleuropneumoniae in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine contagious pleuropneumonia (PCP) is a highly contagious disease that is caused by <it>Actinobacillus pleuropneumoniae </it>(APP) and characterized by severe fibrinous necrotizing hemorrhagic pleuropneumonia, which is a severe threat to the swine industry. In addition to APP RTX-toxins I (ApxI), APP RTX-toxin II (ApxII), APP RTX-toxin III (ApxIII) and Outer membrane protein (OMP), there may be other useful antigens that can contribute to protection. In the development of an efficacious vaccine against APP, the immunogenicities of multicomponent recombinant subunit vaccines were evaluated.</p> <p>Methods</p> <p>Six major virulent factor genes of APP, i.e., <it>apxI</it>, <it>apxII</it>, <it>apxIII</it>, APP RTX-toxins IV (<it>apxIV</it>), <it>omp </it>and type 4 fimbrial structural (<it>apfa</it>) were expressed. BALB/c mice were immunized with recombinant ApxI ( rApxI), recombinant ApxII (rApxII), recombinant ApxIII (rApxIII) and recombinant OMP (rOMP) (Group I); rApxI, rApxII, rApxIII, recombinant ApxIV (rApxIV), recombinant Apfa (rApfa) and rOMP (Group II); APP serotype 1 (APP1) inactivated vaccine (Group III); or phosphate-buffered saline (PBS) (Control group), respectively. After the first immunization, mice were subjected to two booster immunizations at 2-week intervals, followed by challenge with APP1 Shope 4074 and APP2 S1536.</p> <p>Results</p> <p>The efficacy of the multicomponent recombinant subunit vaccines was evaluated on the basis of antibody titers, survival rates, lung lesions and indirect immunofluorescence (IIF) detection of APP. The antibody level of Group I was significantly higher than those of the other three groups (<it>P </it>< 0.05). The survival rate of Group I was higher than that of Groups II and III (<it>P </it>< 0.05) and the control (<it>P </it>< 0.01). Compared with the other three groups, the lungs of Group I did not exhibit obvious hemorrhage or necrosis, and only showed weak and scattered fluorescent dots by IIF detection.</p> <p>Conclusion</p> <p>The result indicates that the multicomponent recombinant subunit vaccine composed of rApxI, rApxII, rApxIII and rOMP can provide effective cross-protection against homologous and heterologous APP challenge.</p

    Characterization of a multidrug-resistant porcine Klebsiella pneumoniae sequence type 11 strain coharboring blaKPC-2 and fosA3 on two novel hybrid plasmids

    Get PDF
    The occurrence of carbapenemase-producing Enterobacteriaceae (CPE) poses a considerable risk for public health. The gene for Klebsiella pneumoniae carbapenemase-2 (KPC-2) has been reported in many countries worldwide, and KPC-2-producing strains are mainly of human origin. In this study, we identified two novel hybrid plasmids that carry either blaKPC-2 or the fosfomycin resistance gene fosA3 in the multiresistant K. pneumoniae isolate K15 of swine origin in China. The blaKPC-2-bearing plasmid pK15-KPC was a fusion derivative of an IncF33:A−:B− incompatibility group (Inc) plasmid and chromosomal sequences of K. pneumoniae (CSKP). A 5-bp direct target sequence duplication (GACTA) was identified at the boundaries of the CSKP, suggesting that the integration might have been due to a transposition event. The blaKPC-2 gene on pK15-KPC was in a derivative of ΔTn6296-1. The multireplicon fosA3-carrying IncN-IncR plasmid pK15-FOS also showed a mosaic structure, possibly originating from a recombination between an epidemic fosA3-carrying pHN7A8-like plasmid and a pKPC-LK30-like IncR plasmid. Stability tests demonstrated that both novel hybrid plasmids were stably maintained in the original host without antibiotic selection but were lost from the transformants after approximately 200 generations. This is apparently the first description of a porcine sequence type 11 (ST11) K. pneumoniae isolate coproducing KPC-2 and FosA3 via pK15-KPC and pK15-FOS, respectively. The multidrug resistance (MDR) phenotype of this high-risk K. pneumoniae isolate may contribute to its spread and its persistence

    Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms

    Get PDF
    Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660–LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660–LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660–LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660–LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660–LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis

    A CRISPR/Cas12a-assisted rapid detection platform by biosensing the apxIVA of Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae is an important respiratory pig pathogen that causes substantial losses in the worldwide swine industry. Chronic or subclinical infection with no apparent clinical symptoms poses a challenge for preventing transmission between herds. Rapid diagnostics is important for the control of epidemic diseases. In this study, we formulated an A. pleuropneumoniae species-specific apxIVA-based CRISPR/Cas12a-assisted rapid detection platform (Card) that combines recombinase polymerase amplification (RPA) of target DNA and subsequent Cas12a ssDNase activation. Card has a detection limit of 10 CFUs of A. pleuropneumoniae, and there is no cross-reactivity with other common swine pathogens. The detection process can be completed in 1 h, and there was 100% agreement between the conventional apxIVA-based PCR and Card in detecting A. pleuropneumoniae in lung samples. Microplate fluorescence readout enables high-throughput use in diagnostic laboratories, and naked eye and lateral flow test readouts enable use at the point of care. We conclude that Card is a versatile, rapid, accurate molecular diagnostic platform suitable for use in both laboratory and low-resource settings

    Isolation of Mycobacterium tuberculosis complex (MTBC) from dairy cows in China

    Get PDF
    Eleven thousand five hundred and eighty non-blood samples from dairy cows were subjected to mycobacterium culture and genotyping. As a result, a total of 142 isolates of Mycobacterium tuberculosis complex (MBTC) were identified. Among them, 65 were Mycobacterium tuberculosis, while 77 Mycobacterium bovis. The genotype of M. tuberculosis strains was mainly Beijing family. In addition, the isolation rates of MTBC were 33.89% for lung lymph nodes, 2.81% for nasal swabs, and 3.95% for pharyngeal swabs from cattle positive to tuberculin skin test, respectively. This evidence implied that M. tuberculosis infection in cattle is a new risk to public health and should be paid more attention.Key words: Mycobacterium tuberculosis complex, cows, tuberculosis, zoonosis

    Mesenchymal stem cell-derived exosomes can alleviate GVHD and preserve the GVL effect in allogeneic stem cell transplantation animal models

    Get PDF
    BackgroundMesenchymal stem cells (MSCs) can alleviate graft-versus-host disease (GVHD) in hematopoietic stem cell transplantation (HSCT). MSCs-derived exosomes (MEXs) can mirror the biological function of their parent cells. Whether MEXs can alleviate GVHD like their parent cells or not is unclear. In this study, we investigate the effects of MEXs on GVHD and graft-versus-leukemia (GVL) effect in vitro and in HSCT animal models.MethodMSCs were produced using bone marrow mononuclear cells (MNCs), and MEXs were separated from the supernatants of MSCs. Electron microscopy, western blot, and nanoparticle tracking analysis (NTA) were used to determine the characteristics of MEXs. The immunomodulatory function of MEXs and their effects on GVHD and GVL were examined in vitro and in vivo.ResultLike other cell-type derived exosomes, our data revealed that MEXs were also disc-shaped vesicles with a diameter of 100–200 nm under electron microscopy and were positive for the exosomal hallmark proteins. MEXs can notably inhibit the expression of costimulatory molecules and functional cytokine secretion of dendritic cells (DCs). Meanwhile, MEXs can exert suppressive effects on T lymphocyte proliferation and activation. Moreover, MEXs can also encourage the polarization of macrophages toward the M2 type. In animal HSCT models, MEXs can promote the differentiation of Treg cells in spleens, decrease the GVHD score, increase the survival rate of mice, and preserve the cytotoxic antileukemia effects of CD8+ T lymphocytes from recipient mice.ConclusionThese findings showed that MEXs exert their effects by inhibiting the immunomodulatory function of DCs, macrophages, and T lymphocytes. In the animal model, MEXs ameliorate the clinical symptoms of GVHD, while maintaining the antitumor effects of CD8+ T lymphocytes. Therefore, it can be inferred that MEXs can separate GVHD from GVL in HSCT. Our study suggests that MEXs have broad clinical application potential in the prevention and treatment of GVHD in HSCT in the near future

    Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network

    Get PDF
    Introduction: CircRNA-protein binding plays a critical role in complex biological activity and disease. Various deep learning-based algorithms have been proposed to identify CircRNA-protein binding sites. These methods predict whether the CircRNA sequence includes protein binding sites from the sequence level, and primarily concentrate on analysing the sequence specificity of CircRNA-protein binding. For model performance, these methods are unsatisfactory in accurately predicting motif sites that have special functions in gene expression.Methods: In this study, based on the deep learning models that implement pixel-level binary classification prediction in computer vision, we viewed the CircRNA-protein binding sites prediction as a nucleotide-level binary classification task, and use a fully convolutional neural networks to identify CircRNA-protein binding motif sites (CPBFCN).Results: CPBFCN provides a new path to predict CircRNA motifs. Based on the MEME tool, the existing CircRNA-related and protein-related database, we analysed the motif functions discovered by CPBFCN. We also investigated the correlation between CircRNA sponge and motif distribution. Furthermore, by comparing the motif distribution with different input sequence lengths, we found that some motifs in the flanking sequences of CircRNA-protein binding region may contribute to CircRNA-protein binding.Conclusion: This study contributes to identify circRNA-protein binding and provides help in understanding the role of circRNA-protein binding in gene expression regulation

    The SapA Protein Is Involved in Resistance to Antimicrobial Peptide PR-39 and Virulence of Actinobacillus pleuropneumoniae

    Get PDF
    Antimicrobial peptides are essential to the innate immune defense of the mammal against bacterial infection. However, pathogenic bacteria have evolved multiple strategies to resist and evade antimicrobial peptides, which is vital to bacterial survival and colonization in hosts. PR-39 is a linear porcine antimicrobial peptide containing 39 amino acid residues with a high proline content. Resistance to antimicrobial peptide PR-39 has been observed in Actinobacillus pleuropneumoniae. However, little is known about the factors required for this resistance. In the present study, PR-39 exposure increased the expression of the sapA gene in A. pleuropneumoniae. The sapA gene, which encodes a putative peptide transport periplasmic protein, was deleted from this bacterium. The ΔsapA mutant showed increased sensitivity to PR-39 compared to the wild-type MD12 and complemented PΔsapA strains. However, the ΔsapA mutant did not exhibit any alterations in outer membrane integrity. Scanning electron microscopy showed that the ΔsapA mutant displayed morphological defects, as indicated by a deformed and sunken shape after PR-39 treatment. In addition, disruption of the SapA protein led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. Collectively, these data suggest that SapA acts as one mechanism for A. pleuropneumoniae to counteract PR-39-mediated killing. To the best of our knowledge, this is the first study to show a mechanism underlying antimicrobial peptide resistance in A. pleuropneumoniae

    DosR’s multifaceted role on Mycobacterium bovis BCG revealed through multi-omics

    Get PDF
    Mycobacterium tuberculosis (Mtb) is an intracellular bacterium that causes a highly contagious and potentially lethal tuberculosis (TB) in humans. It can maintain a dormant TB infection within the host. DosR (dormancy survival regulator) (Rv3133c) has been recognized as one of the key transcriptional proteins regulating bacterial dormancy and participating in various metabolic processes. In this study, we extensively investigate the still not well-comprehended role and mechanism of DosR in Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) through a combined omics analysis. Our study finds that deleting DosR significantly affects the transcriptional levels of 104 genes and 179 proteins. Targeted metabolomics data for amino acids indicate that DosR knockout significantly upregulates L-Aspartic acid and serine synthesis, while downregulating seven other amino acids, including L-histidine and lysine. This suggests that DosR regulates amino acid synthesis and metabolism. Taken together, these findings provide molecular and metabolic bases for DosR effects, suggesting that DosR may be a novel regulatory target
    • …
    corecore