25 research outputs found

    Accurate Lipid Quantification of Tissue Homogenates Requires Suitable Sample Concentration, Solvent Composition, and Homogenization Procedure—A Case Study in Murine Liver

    Get PDF
    Lipidomics aim to quantify lipid species in all kinds of samples, including tissues. To subject a fixed amount of sample to various workflows, tissue homogenates were frequently prepared at defined concentrations in water or by addition of organic solvents. Here, we investigated this first step of tissue lipidomics by quantitative flow injection analysis coupled to Fourier-Transform mass spectrometry (FTMS). The influence of sample concentration, solvent composition, and homogenization procedure on the recovery of lipids was studied in murine liver. Liver homogenates were prepared either by grinding tissue in liquid nitrogen or by bead-based homogenization. Ground samples were dissolved at different concentrations in water, methanol, and water/methanol = 1/1 (v/v). Here, lipid recovery depends on solvent composition and sample concentration. The recovery of nonpolar lipid classes, including triglycerides and cholesteryl ester, was decreased in methanolic homogenates. In contrast, due to superior dispersion of precipitates, bead-based homogenization resulted in efficient lipid recovery independent of the solvent composition. However, lipid distribution within samples, i.e., lipid content of supernatant and pellet following centrifugation, was altered substantially by solvent composition. In conclusion, accurate lipid quantification of tissue homogenates requires evaluation of solvent composition, sample concentration, as well as the homogenization method to guarantee efficient lipid recovery. Due to a potential loss of lipids, removal of precipitates by centrifugation prior to lipid extraction should be avoided

    Quantification of bulk lipid species in human platelets and their thrombin-induced release

    Get PDF
    Lipids play a central role in platelet physiology. Changes in the lipidome have already been described for basal and activated platelets. However, quantitative lipidomic data of platelet activation, including the released complex lipids, are unavailable. Here we describe an easy-to-use protocol based on flow-injection mass spectrometry for the quantitative analysis of bulk lipid species in basal and activated human platelets and their lipid release after thrombin activation. We provide lipid species concentrations of 12 healthy human donors, including cholesteryl ester (CE), ceramide (Cer), free cholesterol (FC), hexosylceramide (HexCer), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM) and triglycerides (TG). The assay exhibited good technical repeatability (CVs < 5% for major lipid species in platelets). Except for CE and TG, the inter-donor variability of the majority of lipid species concentrations in platelets was < 30% CV. Balancing of concentrations revealed the generation of LPC and loss of TG. Changes in lipid species concentrations indicate phospholipase-mediated release of arachidonic acid mainly from PC, PI, and PE but not from PS. Thrombin induced lipid release was mainly composed of FC, PS, PC, LPC, CE, and TG. The similarity of the released lipidome with that of plasma implicates that lipid release may originate from the open-canalicular system (OCS). The repository of lipid species concentrations determined with this standardized platelet release assay contribute to elucidating the physiological role of platelet lipids and provide a basis for investigating the platelet lipidome in patients with hemorrhagic or thrombotic disorders

    Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function

    Get PDF
    Background Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. Results We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. Summary In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.ISSN:1932-620

    Novel hepatic microRNAs upregulated in human nonalcoholic fatty liver disease

    Get PDF
    MicroRNAs (miRNAs) control gene expression by reducing mRNA stability and translation. We aimed to identify alterations in human liver miRNA expression/function in nonalcoholic fatty liver disease (NAFLD). Subjects with the highest (median liver fat 30%, n = 15) and lowest (0%, n = 15) liver fat content were selected from >100 obese patients for miRNA profiling of liver biopsies on microarrays carrying probes for 1438 human miRNAs (a cross-sectional study). Target mRNAs and pathways were predicted for the miRNAs most significantly upregulated in NAFLD, their cell-type-specific expression was investigated by quantitative PCR (qPCR), and the transcriptome of immortalized human hepatocytes (IHH) transfected with the miRNA with the highest number of predicted targets, miR-576-5p, was studied. The screen revealed 42 miRNAs up- and two downregulated in the NAFLD as compared to non-NAFLD liver. The miRNAs differing most significantly between the groups, miR-103a-2*, miR-106b, miR-576-5p, miRPlus-I137*, miR-892a, miR-1282, miR-3663-5p, and miR-3924, were all upregulated in NAFLD liver. Target pathways predicted for these miRNAs included ones involved in cancer, metabolic regulation, insulin signaling, and inflammation. Consistent transcriptome changes were observed in IHH transfected with miR-576-5p, and western analysis revealed a marked reduction of the RAC1 protein belonging to several miR-576-5p target pathways. To conclude, we identified 44 miRNAs differentially expressed in NAFLD versus non-NAFLD liver, 42 of these being novel in the context of NAFLD. The study demonstrates that by applying a novel study set-up and a broad-coverage array platform one can reveal a wealth of previously undiscovered miRNA dysregulation in metabolic disease.Peer reviewe

    Association of ABCA1 with Syntaxin 13 and Flotillin-1 and Enhanced Phagocytosis in Tangier Cells

    No full text
    The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I–dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX–insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains

    Mortality association of PC species (A), LPC species (B) and PC O species (C).

    No full text
    <p>EDTA plasma concentrations were determined by ESI-MS/MS. Species with significant association to CAD and total mortality are shown. Models were adjusted for age, gender, smoking, LDL, HDL, diabetes and hypertension. Bars represent the hazard ratio −1. Positive association with CAD is shown in grey and positive association with total mortality in black. Negative association with CAD is shown by a dashed white bar and negative association with total mortality in white. Species are named according to the number of carbon atoms and degree of desaturation. Besides their association the mean concentration and standard deviation are shown. PC and LPC species were annotated based on assumption of even numbered carbon chains only.</p

    Metabolic differences in ATP10D deficient and transgenic mice on high fat diet.

    No full text
    <p>A. Body weight gain over eight weeks on high fat diet. B. Epididymal fat mass and adipocyte size after eight weeks on high fat diet. C. Insulin tolerance of ATP10D deficient and transgenic mice after eight weeks on high fat diet. ATP10D deficient, solid line; ATP10D transgenic, dashed line. CTRL, ATP10D deficient; TG, ATP10D transgenic; *p<0.05; ***p<0.001.</p

    Ceramide and polyunsaturated phospholipids are strongly reduced in human hepatocellular carcinoma

    No full text
    Lipid composition affects membrane function, cell proliferation and cell death and is changed in cancer tissues. Hepatocellular carcinoma (HCC) is an aggressive cancer and this study aimed at a comprehensive characterization of hepatic and serum lipids in human HCC. Cholesteryl ester were higher in tumorous tissues (TT) compared to adjacent non-tumorous tissues (NT). Free cholesterol exerting cytotoxic effects was not changed. Phosphatidylethanolamine, -serine (PS) and -inositol but not phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) were reduced in HCC tissues. Saturated species mostly increased and polyunsaturated species were diminished in all of these phospholipids. Ceramide (Cer) was markedly reduced in HCC tissues and higher levels of sphingomyelin suggest impaired sphingomyelinase activity as one of the underlying mechanisms. Importantly, ceramide in NT increased in HCC stage T3. Ceramide released from hepatocytes attracts immune cells and a positive association of the macrophage specific receptor CD163 with NT ceramide was identified. HCC associated lipid changes did not differ in patients suffering from type 2 diabetes. Protein levels of p53 were induced in TT and negatively correlated with Cer d18:1/16:0 and PS 36:1. Of the lipid species changed in HCC tissues only TT Cer d18:1/16:0, Cer d18:1/24:1, PC 38:6 and LPC 22:6 correlated with the respective serum levels. Our study demonstrates a considerably altered hepatic lipidome in HCC tissues. Ceramide was markedly reduced in HCC tissues, and therefore, raising ceramide levels specifically in the tumor represents a reasonable therapeutic approach for the treatment of this malignancy. (C) 2016 Elsevier B.V. All rights reserved

    Anthropometric and clinical parameters of the examined cohort.

    No full text
    <p>BMI, body mass index; CAD, coronary artery disease; HDL, high density lipoprotein; LDL, low density lipoprotein.</p

    Elongation and desaturation of fatty acids.

    No full text
    <p>The n-9-series is endogenously derived from stearate. The n-7-series is endogenously derived from palmitate. Starting point for the n-6- and the n-3-series are linoleic acid and α-linolenic acid, respectively, which are not synthesized endogenously and must be taken up as essential fatty acids through the diet. Adapted from (14). D5D: delta-5 desaturase; D6D: delta-6 desaturase; ELOVL: elongation of long chain fatty acids; FAS: fatty acid synthase; SCD: stearoyl-CoA desaturase.</p
    corecore