11 research outputs found
Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.</p
Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.</p
Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p  < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p  < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment
MAIT Cells Balance the Requirements for Immune Tolerance and Anti-Microbial Defense During Pregnancy
Mucosal-associated invariant T (MAIT) cells are an innate-like T cell subset with proinflammatory and cytotoxic effector functions. During pregnancy, modulation of the maternal immune system, both at the fetal-maternal interface and systemically, is crucial for a successful outcome and manifests through controlled enhancement of innate and dampening of adaptive responses. Still, immune defenses need to efficiently protect both the mother and the fetus from infection. So far, it is unknown whether MAIT cells are subjected to immunomodulation during pregnancy, and characterization of decidual MAIT cells as well as their functional responses during pregnancy are mainly lacking. We here characterized the presence and phenotype of V alpha 7.2(+)CD161(+) MAIT cells in blood and decidua (the uterine endometrium during pregnancy) from women pregnant in the 1(st) trimester, i.e., the time point when local immune tolerance develops. We also assessed the phenotype and functional responses of MAIT cells in blood of women pregnant in the 3(rd) trimester, i.e., when systemic immunomodulation is most pronounced. Multi-color flow cytometry panels included markers for MAIT subsets, and markers of activation (CD69, HLA-DR, Granzyme B) and immunoregulation (PD-1, CTLA-4). MAIT cells were numerically decreased at the fetal-maternal interface and showed, similar to other T cells in the decidua, increased expression of immune checkpoint markers compared with MAIT cells in blood. During the 3(rd) trimester, circulating MAIT cells showed a higher expression of CD69 and CD56, and their functional responses to inflammatory (activating anti-CD3/CD28 antibodies, and IL-12 and IL-18) and microbial stimuli (Escherichia coli, group B streptococci and influenza A virus) were generally increased compared with MAIT cells from non-pregnant women, indicating enhanced antimicrobial defenses during pregnancy. Taken together, our findings indicate dual roles for MAIT cells during pregnancy, with an evidently well-adapted ability to balance the requirements of immune tolerance in parallel with maintained antimicrobial defenses. Since MAIT cells are easily activated, they need to be strictly regulated during pregnancy, and failure to do so could contribute to pregnancy complications.Funding Agencies|MIIC (Medical Infection and Inflammation Center, Linkoping University and Region Ostergotland) seed grant; MIIC postdoc grant; FORSS (Medical Research Council of Southeast Sweden) [FORSS-657691, FORSS-751571, FORSS-85007]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2017-01091, 2018-02776]; Linkoping University Hospital Research Fund</p
Non-invasive measurement of adrenal response after standardized exercise tests in prepubertal children
Objective: To determine the feasibility of non-invasive evaluation of adrenal response in healthy prepubertal children by standardized exercise tests. Methods: On separate occasions, healthy prepubertal children performed a submaximal cycling test, a maximal cycling test, and a 20-m shuttle-run test. Salivary cortisol levels were determined before exercise, and 1 and 15 min after exercise. Results: Immediately after cessation of the cycling and shuttle-run tests, salivary cortisol levels remained unchanged or decreased. Fifteen minutes after the shuttle-run test, salivary cortisol levels increased significantly. This increase in salivary cortisol levels was not observed 15 min after the cessation of the cycling tests. Conclusion: The results of this study demonstrate a different response in salivary cortisol levels after standardized cycling and running tests in prepubertal children. The increase in salivary cortisol levels found after a short standardized running test suggests that this may be a practical non-invasive method for evaluating adrenal response in healthy prepubertal children
Attenuated salivary cortisol response after exercise test in children with asthma
Objective: The clinical relevance of lower basal cortisol levels in children with asthma is unclear. We compared the salivary cortisol response after a standardized exercise test in children with asthma versus the salivary cortisol response in healthy children. Methods: Nineteen prepubertal children with asthma and 20 prepubertal healthy children performed a standardized exercise test twice. Salivary cortisol levels were determined before exercise and immediately and 15 min after exercise. Morning salivary cortisol levels were determined from saliva collected at home. Results: Salivary cortisol levels increased in 84.2% of the healthy children compared to 35.0% in children with asthma after the 20-m shuttle-run test. Median increase in salivary cortisol levels was 200.3% [95% confidence interval (CI), 141.8-346.1] in healthy children compared to 89.8% (95% CI, 56.9-181.6) in children with asthma. The response was not related to the morning salivary cortisol level or maintenance dose of inhaled corticosteroids. The mean time to exhaustion of both shuttle-run tests was significantly shorter in children with asthma (mean difference 1.4 min; 95% CI, 0.7-2.3). None of the children had to stop because of dyspnea. Conclusion: Our study demonstrates that children with asthma using a maintenance dose of inhaled corticosteroids (ICS) have an attenuated salivary cortisol response compared with healthy children
Identification of recent exacerbations in COPD patients by electronic nose
Molecular profiling of exhaled breath by electronic nose (eNose) might be suitable as a noninvasive tool that can help in monitoring of clinically unstable COPD patients. However, supporting data are still lacking. Therefore, as a first step, this study aimed to determine the accuracy of exhaled breath analysis by eNose to identify COPD patients who recently exacerbated, defined as an exacerbation in the previous 3 months. Data for this exploratory, cross-sectional study were extracted from the multicentre BreathCloud cohort. Patients with a physician-reported diagnosis of COPD (n=364) on maintenance treatment were included in the analysis. Exacerbations were defined as a worsening of respiratory symptoms requiring treatment with oral corticosteroids, antibiotics or both. Data analysis involved eNose signal processing, ambient air correction and statistics based on principal component (PC) analysis followed by linear discriminant analysis (LDA). Before analysis, patients were randomly divided into a training (n=254) and validation (n=110) set. In the training set, LDA based on PCs 1-4 discriminated between patients with a recent exacerbation or no exacerbation with high accuracy (receiver operating characteristic (ROC)-area under the curve (AUC)=0.98, 95% CI 0.97-1.00). This high accuracy was confirmed in the validation set (AUC=0.98, 95% CI 0.94-1.00). Smoking, health status score, use of inhaled corticosteroids or vital capacity did not influence these results. Exhaled breath analysis by eNose can discriminate with high accuracy between COPD patients who experienced an exacerbation within 3 months prior to measurement and those who did not. This suggests that COPD patients who recently exacerbated have their own exhaled molecular fingerprint that could be valuable for monitoring purposes