139 research outputs found

    Intrinsic Circadian Clock of the Mammalian Retina: Importance for Retinal Processing of Visual Information

    Get PDF
    SummaryCircadian clocks are widely distributed in mammalian tissues, but little is known about the physiological functions of clocks outside the suprachiasmatic nucleus of the brain. The retina has an intrinsic circadian clock, but its importance for vision is unknown. Here we show that mice lacking Bmal1, a gene required for clock function, had abnormal retinal transcriptional responses to light and defective inner retinal electrical responses to light, but normal photoreceptor responses to light and retinas that appeared structurally normal by light and electron microscopy. We generated mice with a retina-specific genetic deletion of Bmal1, and they had defects of retinal visual physiology essentially identical to those of mice lacking Bmal1 in all tissues and lacked a circadian rhythm of inner retinal electrical responses to light. Our findings indicate that the intrinsic circadian clock of the retina regulates retinal visual processing in vivo

    Prognostic factors for changes in the timed 4-stair climb in patients with Duchenne muscular dystrophy, and implications for measuring drug efficacy: A multi-institutional collaboration

    Get PDF
    The timed 4-stair climb (4SC) assessment has been used to measure function in Duchenne muscular dystrophy (DMD) practice and research. We sought to identify prognostic factors for changes in 4SC, assess their consistency across data sources, and the extent to which prognostic scores could be useful in DMD clinical trial design and analysis. Data from patients with DMD in the placebo arm of a phase 3 trial (Tadalafil DMD trial) and two real-world sources (Universitaire Ziekenhuizen, Leuven, Belgium [Leuven] and Cincinnati Children\u27s Hospital Medical Center [CCHMC]) were analyzed. One-year changes in 4SC completion time and velocity (stairs/second) were analyzed. Prognostic models included age, height, weight, steroid use, and multiple timed function tests and were developed using multivariable regression, separately in each data source. Simulations were used to quantify impacts on trial sample size requirements. Data on 1-year changes in 4SC were available from the Tadalafil DMD trial (n = 92) Leuven (n = 67), and CCHMC (n = 212). Models incorporating multiple timed function tests, height, and weight significantly improved prognostic accuracy for 1-year change in 4SC (R2: 29%-36% for 4SC velocity, and 29%-34% for 4SC time) compared to models including only age, baseline 4SC and steroid duration (R2:8%-17% for 4SC velocity and 2%-13% for 4SC time). Measures of walking and rising ability contributed important prognostic information for changes in 4SC. In a randomized trial with equal allocation to treatment and placebo, adjustment for such a prognostic score would enable detection (at 80% power) of a treatment effect of 0.25 stairs/second with 100-120 patients, compared to 170-190 patients without prognostic score adjustment. Combining measures of ambulatory function doubled prognostic accuracy for 1-year changes in 4SC completion time and velocity. Randomized clinical trials incorporating a validated prognostic score could reduce sample size requirements by approximately 40%. Knowledge of important prognostic factors can also inform adjusted comparisons to external controls

    Real-world treatment patterns and clinical outcomes for inpatients with COVID-19 in the US from September 2020 to February 2021

    Get PDF
    The objective of this retrospective cohort study was to describe pre-treatment characteristics, treatment patterns, health resource use, and clinical outcomes among adults hospitalized with COVID-19 in the United States (US) who initiated common treatments for COVID-19. The Optum® COVID-19 electronic health records database was used to identify patients >18 years, diagnosed with COVID-19, who were admitted to an inpatient setting and received treatments of interest for COVID-19 between September 2020 and January 2021. Patients were stratified into cohorts based on index treatment use. Patient demographics, medical history, care setting, medical procedures, subsequent treatment use, patient disposition, clinical improvement, and outcomes were summarized descriptively. Among a total of 26,192 patients identified, the most prevalent treatments initiated were dexamethasone (35.4%) and dexamethasone + remdesivir (14.9%), and dexamethasone was the most common subsequent treatment. At day 14 post-index, <10% of patients received any treatments of interest. Mean (standard deviation [SD]) patient age was 65.6 (15.6) years, and the most prevalent comorbidities included hypertension (44.8%), obesity (35.4%), and diabetes (25.7%). At the end of follow-up, patients had a mean (SD) 8.1 (6.6) inpatient days and 1.4 (4.1) days with ICU care. Oxygen supplementation, non-invasive, or invasive ventilation was required by 4.5%, 3.0%, and 3.1% of patients, respectively. At the end of follow-up, 84.2% of patients had evidence of clinical improvement, 3.1% remained hospitalized, 83.8% were discharged, 4% died in hospital, and 9.1% died after discharge. Although the majority of patients were discharged alive, no treatments appeared to alleviate the inpatient morbidity and mortality associated with COVID-19. This highlights an unmet need for effective treatment options for patients hospitalized with COVID-19

    Cardiovascular and Economic Outcomes After Initiation of Lipid-Lowering Therapy With Atorvastatin vs Simvastatin in an Employed Population

    Get PDF
    OBJECTIVE: To compare the risk of cardiovascular-related hospitalization, statin adherence, and direct (medical and drug) and indirect (disability and medically related absenteeism) costs in US employees in whom atorvastatin or simvastatin was newly prescribed

    DMD Genotypes and Motor Function in Duchenne Muscular Dystrophy: A Multi-institution Meta-analysis With Implications for Clinical Trials

    Get PDF
    BACKGROUND AND OBJECTIVES: Clinical trials of genotype-targeted treatments in Duchenne muscular dystrophy (DMD) traditionally compare treated patients to untreated patients with the same DMD genotype class. This avoids confounding of drug efficacy by genotype effects but also shrinks the pool of eligible controls, increasing challenges for trial enrollment in this already rare disease. To evaluate the suitability of genotypically unmatched controls in DMD, we quantified effects of genotype class on 1-year changes in motor function endpoints used in clinical trials. METHODS: Over 1,600 patient-years of follow-up (>700 patients) were studied from six real-world/natural history data sources (UZ Leuven, PRO-DMD-01 shared by CureDuchenne, iMDEX, North Star UK, Cincinnati Children's Hospital Medical Center, and the DMD Italian Group), with genotypes classified as amenable to skipping exons 44, 45, 51 or 53, other skippable, nonsense, and other mutations. Associations between genotype class and 1-year changes in North Star Ambulatory Assessment total score (ΔNSAA) and in 10-meter walk/run velocity (Δ10MWR) were studied in each data source with and without adjustment for baseline prognostic factors. RESULTS: The studied genotype classes accounted for approximately 2% of variation in ΔNSAA outcomes after 12 months, whereas other prognostic factors explained >30% of variation in large data sources. Based on a meta-analysis across all data sources, pooled effect estimates for the studied skip-amenable mutation classes were all small in magnitude (<2 units in ΔNSAA total score in 1-year follow up), smaller than clinically important differences in NSAA, and were precisely estimated with standard errors <1 unit after adjusting for non-genotypic prognostic factors. DISCUSSION: These findings suggest viability of trial designs incorporating genotypically mixed or unmatched controls for up to 12 months in duration for motor function outcomes, which would ease recruitment challenges and reduce numbers of patients assigned to placebos. Such trial designs, including multi-genotype platform trials and hybrid designs, should ensure baseline balance between treatment and control groups for the most important prognostic factors, while accounting for small remaining genotype effects quantified in the present study

    Real-world and natural history data for drug evaluation in Duchenne muscular dystrophy: suitability of the North Star Ambulatory Assessment for comparisons with external controls

    Get PDF
    Using external controls based on real-world or natural history data (RWD/NHD) for drug evaluations in Duchenne muscular dystrophy (DMD) is appealing given the challenges of enrolling placebo-controlled trials, especially for multi-year trials. Comparisons to external controls, however, face risks of bias due to differences in outcomes between trial and RWD/NHD settings. To assess this bias empirically, we conducted a multi-institution study comparing mean 48-week changes in North Star Ambulatory Assessment (NSAA) total score between trial placebo arms and RWD/NHD sources, with and without adjustment for baseline prognostic factors. Analyses used data from three placebo arms (235 48-week intervals, N = 235 patients) and three RWD/NHD sources (348 intervals, N = 202 patients). Differences in mean ΔNSAA between placebo arms and RWD/NHD sources were small before adjustment (-1.2 units, 95% CI: [-2.0 -0.5]) and were attenuated and no longer statistically significant after adjustment (0.1 units (95% CI: [-0.6, 0.8]). Results were similar whether adjusting using multivariable regression or propensity score matching. This consistency in ΔNSAA between trial placebo arms and RWD/NHD sources accords with prior findings for the six-minute walk distance, provides a well-validated framework for baseline adjustment of prognostic factors, and supports the suitability of RWD/NHD external controls for drug evaluations in ambulatory DMD

    Categorizing natural history trajectories of ambulatory function measured by the 6-minute walk distance in patients with Duchenne muscular dystrophy

    Get PDF
    High variability in patients' changes in 6 minute walk distance (6MWD) over time has complicated clinical trials of treatment efficacy in Duchenne muscular dystrophy (DMD). We assessed whether boys with DMD could be grouped into classes that shared similar ambulatory function trajectories as measured by 6MWD. Ambulatory boys aged 5 years or older with genetically confirmed DMD who were enrolled in a natural history study at 11 care centers throughout Italy were included. For each boy, standardized assessments of 6MWD were available at annual intervals spanning 3 years. Trajectories of 6MWD vs. age and trajectories of 6MWD vs. time from enrollment were examined using latent class analysis. A total of 96 boys were included. At enrollment, the mean age was 8.3 years (mean 6MWD: 374 meters). After accounting for age, baseline 6MWD, and steroid use, four latent trajectory classes were identified as explaining 3-year 6MWD outcomes significantly better than a single average trajectory. Patient trajectories of 6MWD change from enrollment were categorized as having fast decline (n\ue2\u80\u89=\ue2\u80\u8925), moderate decline (n\ue2\u80\u89=\ue2\u80\u8919), stable function (n\ue2\u80\u89=\ue2\u80\u8937), and improving function (n\ue2\u80\u89=\ue2\u80\u8915) during the 3-year follow-up. After accounting for trajectory classes, the standard deviation of variation in 6MWD was reduced by approximately 40%. The natural history of ambulatory function in DMD may be composed of distinct trajectory classes. The extent to which trajectories are associated with novel and established prognostic factors warrants further study. Reducing unexplained variation in patient outcomes could help to further improve DMD clinical trial design and analysis

    Ultra-fast sequence clustering from similarity networks with SiLiX

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of gene sequences that are available for comparative genomics approaches is increasing extremely quickly. A current challenge is to be able to handle this huge amount of sequences in order to build families of homologous sequences in a reasonable time.</p> <p>Results</p> <p>We present the software package <monospace>SiLiX</monospace> that implements a novel method which reconsiders single linkage clustering with a graph theoretical approach. A parallel version of the algorithms is also presented. As a demonstration of the ability of our software, we clustered more than 3 millions sequences from about 2 billion BLAST hits in 7 minutes, with a high clustering quality, both in terms of sensitivity and specificity.</p> <p>Conclusions</p> <p>Comparing state-of-the-art software, <monospace>SiLiX</monospace> presents the best up-to-date capabilities to face the problem of clustering large collections of sequences. <monospace>SiLiX</monospace> is freely available at <url>http://lbbe.univ-lyon1.fr/SiLiX</url>.</p
    • …
    corecore