2,225 research outputs found

    Suggestions for improving the efficiency of ground-based neutron monitors for detecting solar neutrons

    Get PDF
    On the occasion of the June 3, 1982 intense gamma-ray solar flare a significant increase in counting rate due to solar neutrons was observed by the neutron monitors of Junsfraujoch and Lomnicky Stit located at middle latitudes and high altitudes. In spite of a larger detector employed and of the smaller solar zenith angle, the amplitude of the same event observed at Rome was much smaller and the statistical fluctuations of the salactic cosmic ray background higher than the ones registered at the two mountain stations, because of the greater atmospheric depth at which the Rome monitor is located. The effeciency for detecting a solar neutron event by a NM-64 monitor as a function of the Sun zenith angle, atmospheric depth and threshold rigidity of the station was studied

    The flare origin of Forbush decreases not associated with solar flares on the visible hemisphere of the Sun

    Get PDF
    Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region

    Anomalous short-term increases in the galactic cosmic ray intensity: Are they related to the interplanetary magnetic cloud-like structures?

    Get PDF
    Thirty-one short-term increases (time duration 24 hours and amplitude up to 5%) in the galactic cosmic ray intensity, occurring inside Forbush decreases events, have been identified over the period 1966 - 1977. These increases are highly anisotropic and occur after the compression region following the shock; the interplanetary medium is characterized by intense ( 10 nT) and higly fluctuating magnetic field B, high velocity, low density and temperature (flare ejecta piston?). These B-fluctuations seem to be ordered variations which could be representative of magnetic clouds. Also the large cosmic ray increase occurring on 17-18 September 1979, belongs to this category of events

    Effect of continuum couplings in fusion of halo 11^{11}Be on 208^{208}Pb around the Coulomb barrier

    Get PDF
    The effect of continuum couplings in the fusion of the halo nucleus 11^{11}Be on 208^{208}Pb around the Coulomb barrier is studied using a three-body model within a coupled discretised continuum channels (CDCC) formalism. We investigate in particular the role of continuum-continuum couplings. These are found to hinder total, complete and incomplete fusion processes. Couplings to the projectile 1p1/21p_{1/2} bound excited state redistribute the complete and incomplete fusion cross sections, but the total fusion cross section remains nearly constant. Results show that continuum-continuum couplings enhance the irreversibility of breakup and reduce the flux that penetrates the Coulomb barrier. Converged total fusion cross sections agree with the experimental ones for energies around the Coulomb barrier, but underestimate those for energies well above the Coulomb barrier.Comment: 15 pages, 7 figures, accepted in Phys. Rev.
    corecore