994 research outputs found

    TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

    Get PDF
    Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde

    Matching factorization theorems with an inverse-error weighting

    Get PDF
    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements

    Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data

    Get PDF
    We present an extraction of unpolarized transverse-momentum-dependent parton distribution and fragmentation functions based on more than two thousand data points from several experiments for two different processes: semi-inclusive deep-inelastic scattering and Drell-Yan production. The baseline analysis is performed using the Monte Carlo replica method and resumming large logarithms at (NLL)-L-3 accuracy. The resulting description of the data is very good (chi(2)/N-dat = 1.06). For semi-inclusive deep-inelastic scattering, predictions for multiplicities are normalized by factors that cure the discrepancy with data introduced by higher-order perturbative corrections

    System and method for real time remote measurement of geometric parameters of a pipeline in the launch step, through sound waves

    Get PDF
    A system for real time remote measurement, through sound waves, of geometric parameters of a pipeline in the launch step is described. System comprises an acoustic transceiver unit which can be positioned in pipeline , and a control unit. The acoustic transceiver comprises an acoustic transmission configured to emit an input acoustic signal sa1 into pipeline 2, based on an electric pilot signal sp; and further comprises an acoustic receiving unit 5, distinct from the acoustic transmission unit 4, configured to detect the input acoustic signal sa1 and to generate a first electric measurement signal se1, dependent on the input acoustic signal sa1 The acoustic receiving unit 5 is further configured to receive an input return signal sa2, generated in pipeline 2 and dependent on the input acoustic signal sa1 and on the geometric parameters of pipeline 2, and to generate a second electric measurement signal se2 based on the return acoustic signal sa2. The control unit 3 is configured to generate the electric pilot signal sp and is operatively connected to the acoustic transceiver unit 1 to provide the electric pilot signal sp and to receive the first electric measurement signal se1 and the second electric measurement signal se2. Furthermore, the control unit 3 is configured to measure the geometric parameters of pipeline 2 based on the first and second electric measurement signals (se1, se2 ). A method for real time remote measurement, through sound waves, of geometric parameters of a pipeline 2 in the launch step is further described, which can be carried out by the aforesaid system 10

    Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 647, doi:10.3389/fmicb.2014.00647.The Southern Ocean is currently subject to intense investigations, mainly related to its importance for global biogeochemical cycles and its alarming rate of warming in response to climate change. Microbes play an essential role in the functioning of this ecosystem and are the main drivers of the biogeochemical cycling of elements. Yet, the diversity and abundance of microorganisms in this system remain poorly studied, in particular with regards to changes along environmental gradients. Here, we used amplicon sequencing of 16S rRNA gene tags using primers covering both Bacteria and Archaea to assess the composition and diversity of the microbial communities from four sampling depths (surface, the maximum and minimum of the oxygen concentration, and near the seafloor) at 10 oceanographic stations located in Bransfield Strait [northwest of the Antarctic Peninsula (AP)] and near the sea ice edge (north of the AP). Samples collected near the seafloor and at the oxygen minimum exhibited a higher diversity than those from the surface and oxygen maximum for both bacterial and archaeal communities. The main taxonomic groups identified below 100 m were Thaumarchaeota, Euryarchaeota and Proteobacteria (Gamma-, Delta-, Beta-, and Alphaproteobacteria), whereas in the mixed layer above 100 m Bacteroidetes and Proteobacteria (mainly Alpha- and Gammaproteobacteria) were found to be dominant. A combination of environmental factors seems to influence the microbial community composition. Our results help to understand how the dynamic seascape of the Southern Ocean shapes the microbial community composition and set a baseline for upcoming studies to evaluate the response of this ecosystem to future changes.This work was supported by the Brazilian National Counsel of Technological and Scientific Development (Polar Canion CNPq 556848/2009-8, ProOasis CNPq 565040/2010-3, Interbiota CNPq 407889/2013-2 and INCT-MAR-COI). Alex Enrich-Prast received a CNPq Productivity fellowship. Camila N. Signori was supported by a WHOI Mary Sears Visitor Award (for the microbial community analyses) and by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for the “Doctorate Sandwich” scholarship (n. 18835/12-0)

    Label-free electrochemical immunosensor as a reliable point-of-care device for the detection of Interleukin-6 in serum samples from patients with psoriasis

    Get PDF
    interleukin-6 (IL-6) plays a crucial role in autoimmunity and chronic inflammation. this study aims to develop a low-cost, simple-to-manufacture, and user-friendly label-free electrochemical point-of-care device for the rapid detection of IL-6 in patients with psoriasis. precisely, a sandwich-based format immunosensor was developed using two primary antibodies (mAb-IL6 clone-5 and clone-7) and screen-printed electrodes modified with an inexpensive recycling electrochemical enhancing material, called biochar. mAb-IL6 clone-5 was used as a covalently immobilized capture bioreceptor on modified electrodes, and mAb-IL6 clone-7 was used to recognize the immunocomplex (Anti-IL6 clone-5 and IL-6) and form the sandwich. cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conduct electrochemical characterization of the layer-by-layer assembly of the immunosensor, while square wave voltammetry (SWV) was used to perform the sensing. the developed immunosensor demonstrated robust analytical performance in buffer solution, with a wide linear range (LR) by varying from 2 to 250 pg/mL, a good limit of detection (LOD) of 0.78 pg/mL and reproducibility (RSD<7%). In addition, a spectrophotometric ELISA kit was employed to validate the results obtained with the label-free device by analyzing twenty-five serum samples from control and patients affected by psoriasis. a strong correlation in terms of pg/mL concentration of IL-6 was found comparing the two methods, with the advantage for our label-free biosensor of an ease use and a quicker detection time. based on IL-6 levels, the proposed immunosensor is a dependable, non-invasive screening device capable of predicting disease onset, progression, and treatment efficacy

    Sistema de gerenciamento dos Bancos Ativos de Germoplasma da Embrapa Trigo.

    Get PDF
    bitstream/CNPT-2010/40598/1/p-co233.pd

    Gap-filling carbon dioxide, water, energy, and methane fluxes in challenging ecosystems - Comparing between methods, drivers, and gap-lengths

    Get PDF
    Eddy covariance serves as one the most effective techniques for long-term monitoring of ecosystem fluxes, however long-term data integrations rely on complete timeseries, meaning that any gaps due to missing data must be reliably filled. To date, many gap-filling approaches have been proposed and extensively evaluated for mature and/or less actively managed ecosystems. Random forest regression (RFR) has been shown to be stable and perform better in these systems than alternative approaches, particularly when filling longer gaps. However, the performance of RFR gap filling remains less certain in more challenging ecosystems, e.g., actively managed agri-ecosystems and following recent land-use change due to management disturbances, ecosystems with relatively low fluxes due to low signal to noise ratios, or for trace gases other than carbon dioxide (e.g., methane). In an extension to earlier work on gap filling global carbon dioxide, water, and energy fluxes, we assess the RFR approach for gap filling methane fluxes globally. We then investigate a range of gap-filling methodologies for carbon dioxide, water, energy, and methane fluxes in challenging ecosystems, including European managed pastures, Southeast Asian converted peatlands, and North American drylands. Our findings indicate that RFR is a competent alternative to existing research standard gap-filling algorithms. The marginal distribution sampling (MDS) is still suggested for filling short ( 30 days) gaps in carbon dioxide fluxes and also for gap filling other fluxes (e.g. sensible heat, latent energy and methane). In addition, using RFR with globally available reanalysis environmental drivers is effective when measured drivers are unavailable. Crucially, RFR was able to reliably fill cumulative fluxes for gaps > 3 moths and, unlike other common approaches, key environment-flux responses were preserved in the gap-filled data
    • …
    corecore