1,322 research outputs found

    Advanced tungsten fiber-reinforced nickel superalloy

    Get PDF
    Matrix composition, fabrication technique, and fiber diameter were selected to minimize fiber-matrix reaction and preserve composite strength. Composites may be used in place of superalloys where higher strength or greater strength-to-density ratios are advantageous, and will permit higher operating temperatures in particular applications

    Tungsten fiber-reinforced nickel superalloy with greatly increased strength at 2000 degrees F

    Get PDF
    Superalloy has 1000-hour strength of 37,000 psi at 2000 degrees F. The strength to density ratio of the composite is also greater, permitting applications where reduced weight rather than greater strength is desired

    Tungsten fiber-reinforced copper composites form high strength electrical conductors

    Get PDF
    Tungsten fiber-reinforced copper composites have tensile strength, yield strength, and modulus of elasticity proportional to fiber content. The composites form high strength electrical conductors

    Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites

    Get PDF
    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage

    Improved impact-resistant boron-aluminum composites for use as turbine engine fan blades

    Get PDF
    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Thin sheet Charpy and Izod impact tests and standard full size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices (1100 Al) and larger diameter (8 mil) boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage

    Tungsten fiber reinforced superalloys: A status review

    Get PDF
    Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines

    Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    Get PDF
    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F)

    Effect of angleplying and matrix enhancement on impact-resistant boron/aluminum composites

    Get PDF
    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Tensile and dynamic modulus tests, thin sheet Charpy and Izod impact tests, and standard full size Charpy impact tests were conducted on 0.20 mm (8 mil) diameter-B/1100 Al matrix composites. Angleplies ranged from unidirectional to + or - 30 deg. The best compromise between reduced longitudinal properties and increased transverse properties was obtained with + or - 15 deg angleply. The pendulum impact strengths of improved B/Al were higher than that of notched titanium and appear to be enough to warrant consideration of B/Cl for application to fan blades in aircraft gas turbine engines

    Stress-rupture and tensile properties of refractory-metal wires at 2000 deg and 2200 deg F /1093 deg and 1204 deg C/

    Get PDF
    Stress rupture and tensile properties of refractory metal wires at 2000 and 2200 deg

    Evaluation of low-cost aluminum composites for aircraft engine structural applications

    Get PDF
    Panels of discontinuous SiC composites, with several aluminum matrices, were fabricated and evaluated. Modulus, yield strength and tensile strength results indicated that the properties of composites containing SiC whisker, nodule or particulate reinforcements were similar. The modulus of the composites was controlled by the volume percentage of the SiC reinforcement content, while the strength and ductility were controlled by both the reinforcement content and the matrix alloy. The feasibility of fabricating structural shapes by both wire performs and direct casting was demonstrated for Al2O3/Al composites. The feasibility of fabricating high performance composites into structural shapes by low pressure hot molding was demonstrated for B4C-coated B/Al composites
    corecore