3 research outputs found

    A Model of Insulin Resistance and Nonalcoholic Steatohepatitis in Rats : Role of Peroxisome Proliferator-Activated Receptor-α and n-3 Polyunsaturated Fatty Acid Treatment on Liver Injury

    No full text
    Insulin resistance induces nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). We used a high-fat, high-calorie solid diet (HFD) to create a model of insulin resistance and NASH in nongenetically modified rats and to study the relationship between visceral adipose tissue and liver. Obesity and insulin resistance occurred in HFD rats, accompanied by a progressive increase in visceral adipose tissue tumor necrosis factor (TNF)-α mRNA and in circulating free fatty acids. HFD also decreased adiponectin mRNA and peroxisome proliferator-activated receptor (PPAR)-α expression in the visceral adipose tissue and the liver, respectively, and induced hepatic insulin resistance through TNF-α-mediated c-Jun N-terminal kinase (JNK)-dependent insulin receptor substrate-1(Ser307) phosphorylation. These modifications lead to hepatic steatosis accompanied by oxidative stress phenomena, necroinflammation, and hepatocyte apoptosis at 4 weeks and by pericentral fibrosis at 6 months. Supplementation of n-3 polyunsaturated fatty acid, a PPARα ligand, to HFD-treated animals restored hepatic adiponectin and PPARα expression, reduced TNF-α hepatic levels, and ameliorated fatty liver and the degree of liver injury. Thus, our model mimics the most common features of NASH in humans and provides an ideal tool to study the role of individual pathogenetic events (as for PPARα down-regulation) and to define any future experimental therapy, such as n-3 polyunsaturated fatty acid, which ameliorated the degree of liver injury

    Adjusted Troponin I for Improved Evaluation of Patients with Chest Pain

    No full text
    The use of cardiac troponins (cTn) is the gold standard for diagnosing myocardial infarction. Independent of myocardial infarction (MI), however, sex, age and kidney function affect cTn levels. Here we developed a method to adjust cTnI levels for age, sex, and renal function, maintaining a unified cut-off value such as the 99th percentile. A total of 4587 individuals enrolled in a prospective longitudinal study were used to develop a model for adjustment of cTn. cTnI levels correlated with age and estimated glomerular filtration rate (eGFR) in males/females with r(age) = 0.436/0.518 and with (r)(eGFR) = -0.142/-0.207. For adjustment, these variables served as covariates in a linear regression model with cTnl as dependent variable. This adjustment model was then applied to a real-world cohort of 1789 patients with suspected acute MI (AMI) (N = 407). Adjusting cTnI showed no relevant loss of diagnostic information, as evidenced by comparable areas under the receiver operator characteristic curves, to identify AMI in males and females for adjusted and unadjusted cTnI. In specific patients groups such as in elderly females, adjusting cTnI improved specificity for AMI compared with unadjusted cTnI. Specificity was also improved in patients with renal dysfunction by using the adjusted cTnI values. Thus, the adjustments improved the diagnostic ability of cTnI to identify AMI in elderly patients and in patients with renal dysfunction. Interpretation of cTnI values in complex emergency cases is facilitated by our method, which maintains a single diagnostic cut-off value in all patients

    Adjusted Troponin I for Improved Evaluation of Patients with Chest Pain

    No full text
    The use of cardiac troponins (cTn) is the gold standard for diagnosing myocardial infarction. Independent of myocardial infarction (MI), however, sex, age and kidney function affect cTn levels. Here we developed a method to adjust cTnI levels for age, sex, and renal function, maintaining a unified cut-off value such as the 99th percentile. A total of 4587 individuals enrolled in a prospective longitudinal study were used to develop a model for adjustment of cTn. cTnI levels correlated with age and estimated glomerular filtration rate (eGFR) in males/females with r(age) = 0.436/0.518 and with (r)(eGFR) = -0.142/-0.207. For adjustment, these variables served as covariates in a linear regression model with cTnl as dependent variable. This adjustment model was then applied to a real-world cohort of 1789 patients with suspected acute MI (AMI) (N = 407). Adjusting cTnI showed no relevant loss of diagnostic information, as evidenced by comparable areas under the receiver operator characteristic curves, to identify AMI in males and females for adjusted and unadjusted cTnI. In specific patients groups such as in elderly females, adjusting cTnI improved specificity for AMI compared with unadjusted cTnI. Specificity was also improved in patients with renal dysfunction by using the adjusted cTnI values. Thus, the adjustments improved the diagnostic ability of cTnI to identify AMI in elderly patients and in patients with renal dysfunction. Interpretation of cTnI values in complex emergency cases is facilitated by our method, which maintains a single diagnostic cut-off value in all patients
    corecore