1,052 research outputs found

    Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core

    Full text link
    We develop a simple model for the evolution of a nucleon spin in a hot and dense nuclear medium. A given nucleon is limited to one-dimensional motion in a distribution of external, spin-dependent scattering potentials. We calculate the nucleon spin autocorrelation function numerically for a variety of potential densities and distributions which are meant to bracket realistic conditions in a supernova core. For all plausible configurations the width of the spin-density structure function is found to be less than the temperature. This is in contrast with a naive perturbative calculation based on the one-pion exchange potential which overestimates the width and thus suggests a large suppression of the neutrino opacities by nucleon spin fluctuations. Our results suggest that it may be justified to neglect the collisional broadening of the spin-density structure function for the purpose of estimating the neutrino opacities in the deep inner core of a supernova. On the other hand, we find no indication that processes such as axion or neutrino pair emission, which depend on nucleon spin fluctuations, are substantially suppressed beyond the multiple-scattering effect already discussed in the literature. Aside from these practical conclusions, our model reveals a number of interesting and unexpected insights. For example, the spin-relaxation rate saturates with increasing potential strength only if bound states are not allowed to form by including a repulsive core. There is no saturation with increasing density of scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included, uses revtex.sty and epsf.sty. Submitted to Physical Review

    Gravitational wave background from neutron star phase transition for a new class of equation of state

    Full text link
    We study the generation of a stochastic gravitational wave (GW) background produced by a population of neutron stars (NSs) which go over a hadron-quark phase transition in its inner shells. We obtain, for example, that the NS phase transition, in cold dark matter scenarios, could generate a stochastic GW background with a maximum amplitude of hBG1024h_{\rm BG} \sim 10^{-24}, in the frequency band 202000Hz\simeq 20-2000 {\rm Hz} for stars forming at redshifts of up to z20.z\simeq 20. We study the possibility of detection of this isotropic GW background by correlating signals of a pair of `advanced' LIGO observatories.Comment: 7 pages, 1 figur

    Neutralino spectrum in top-down models of UHECR

    Get PDF
    We calculate the cosmic ray spectrum of ultra high energy neutralinos that one should expect provided that the observed ultra high energy cosmic rays are produced by the decay of superheavy particles X, M_X>10^{12} GeV, in supersymmetric models. Our calculation uses an extended DGLAP formalism. Forthcoming cosmic ray observatories should be able to detect these neutralinos.Comment: 10 pages, revtex, 3 eps figures. Difference between the present work and Montecarlo simulations clarifie

    On The Origin of Very High Energy Cosmic Rays

    Full text link
    We discuss the most recent developments in our understanding of the acceleration and propagation of cosmic rays up to the highest energies. In particular we specialize our discussion to three issues: 1) developments in the theory of particle acceleration at shock waves; 2) the transition from galactic to extragalactic cosmic rays; 3) implications of up-to-date observations for the origin of ultra high energy cosmic rays (UHECRs).Comment: Invited Review Article to appear in Modern Physics Letters A, Review Sectio

    Non-extensivity Effects and the Highest Energy Cosmic Ray Affair

    Full text link
    Recent measurements of the cosmic microwave background confirm that it is described by a Planckian distribution with high precision. It is non-extensivity bounded to be less than some parts in 10510^5, or to some parts in 10410^4 at most. This deviation may appear minuscule, but may have a non-negligible effect on a particle propagating through this background over the course of millions of years. In this paper we analyze the possible influence of such a slight deviation upon the propagation of nuclei and protons of ultra-high energy. These particles interact via photopion and photodisintegration processes which we examine taking into account a slight non-extensive background. We show that such a deviation does not exhibit a significant difference in the energy attenuation length of extremely high energy cosmic rays.Comment: Revised version, improvements per referee's suggestion

    Ultra-high energy cosmic rays from Quark Novae

    Full text link
    We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to the randomized pulsar wind and the other to the propelled wind, both boosted by the ultra-relativistic Quark Nova shock. The latter component acquires energies 1015eV<E<1018eV10^{15} {\rm eV}<E<10^{18} {\rm eV} while the former, boosted pulsar wind, achieves ultra-high energies E>1018.6E> 10^{18.6} eV. The composition is dominated by ions present in the pulsar wind in the energy range above 1018.610^{18.6} eV, while at energies below 101810^{18} eV the propelled ejecta, consisting of the fall-back neutron star crust material from the explosion, is the dominant one. Added to these two components, the propeller injects relativistic particles with Lorentz factors Γprop.11000\Gamma_{\rm prop.} \sim 1-1000, later to be accelerated by galactic supernova shocks. The QN model appears to be able to account for the extragalactic cosmic rays above the ankle and to contribute a few percent of the galactic cosmic rays below the ankle. We predict few hundred ultra-high energy cosmic ray events above 101910^{19} eV for the Pierre Auger detector per distant QN, while some thousands are predicted for the proposed EUSO and OWL detectors.Comment: 20 pages, 1 figure. Major revisions in the text. Accepted for publication in the Astrophysical Journa

    IceCube-Plus: An Ultra-High Energy Neutrino Telescope

    Full text link
    While the first kilometer-scale neutrino telescope, IceCube, is under construction, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m grid can deliver a d etector that this a factor of 5 larger for horizontal muons at modest cost.Comment: Version to be published in JCA

    Ultra-High Energy Cosmic Ray Nuclei from Individual Magnetized Sources

    Full text link
    We investigate the dependence of composition, spectrum and angular distributions of ultra-high energy cosmic rays above 10^19 eV from individual sources on their magnetization. We find that, especially for sources within a few megaparsecs from the observer, observable spectra and composition are severely modified if the source is surrounded by fields of ~ 10^-7 Gauss on scales of a few megaparsecs. Low energy particles diffuse over larger distances during their energy loss time. This leads to considerable hardening of the spectrum up to the energy where the loss distance becomes comparable to the source distance. Magnetized sources thus have very important consequences for observations, even if cosmic rays arrive within a few degrees from the source direction. At the same time, details in spectra and chemical composition may be intrinsically unpredictable because they depend on the unknown magnetic field structure. If primaries are predominantly nuclei of atomic mass A accelerated up to a maximum energy E_max with spectra not much softer than E^-2, secondary protons from photo-disintegration can produce a conspicuous peak in the spectrum at energy ~ E_max/A. A related feature appears in the average mass dependence on energy.Comment: 15 pages, 16 ps figures, published version with minor changes, see http://stacks.iop.org/1475-7516/2004/i=08/a=01

    SimProp: a Simulation Code for Ultra High Energy Cosmic Ray Propagation

    Full text link
    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented.Comment: 19 pages, 12 eps figures, version accepted for publication in JCA
    corecore