15 research outputs found
MYC and human telomerase gene (TERC) copy number gain in early-stage non-small cell lung cancer
Objectives: We investigated the frequency of MYC and TERC increased gene copy number (GCN) in early-stage non-small cell lung cancer (NSCLC) and evaluated the correlation of these genomic imbalances with clinicopathologic parameters and outcome. Materials and Methods: Tumor tissues were obtained from 113 resected NSCLCs. MYC and TERC GCNs were tested by fluorescence in situ hybridization (FISH) according to the University of Colorado Cancer Center (UCCC) criteria and based on the receiver operating characteristic (ROC) classification. Results: When UCCC criteria were applied, 41 (36%) cases for MYC and 41 (36%) cases for TERC were considered FISH-positive. MYC and TERC concurrent FISH-positive was observed in 12 cases (11%): 2 (17%) cases with gene amplification and 10 (83%) with high polysomy. By using the ROC analysis, high MYC (mean ≥2.83 copies/cell) and TERC (mean ≥2.65 copies/cell) GCNs were observed in 60 (53.1%) cases and 58 (51.3%) cases, respectively. High TERC GCN was associated with squamous cell carcinoma (SCC) histology (P=0.001). In univariate analysis, increased MYC GCN was associated with shorter overall survival (P=0.032 [UCCC criteria] or P=0.02 [ROC classification]), whereas high TERC GCN showed no association. In multivariate analysis including stage and age, high MYC GCN remained significantly associated with worse overall survival using both the UCCC criteria (P=0.02) and the ROC classification (P=0.008). Conclusions: Our results confirm MYC as frequently amplified in early-stage NSCLC and increased MYC GCN as a strong predictor of worse survival. Increased TERC GCN does not have prognostic impact but has strong association with squamous histology
Concomitant high gene copy number and protein overexpression of IGF1R and EGFR negatively affect disease-free survival of surgically resected non-small-cell-lung cancer patients
BACKGROUND:
Insulin-like growth factor 1 receptor (IGF1R) represents a novel molecular target in non-small-cell-lung cancer (NSCLC). IGF1R and epidermal growth factor receptor (EGFR) activation are essential to mediate tumor cell survival, proliferation, and invasion. This study investigates the prognostic role of IGF1R and EGFR in surgically resected NSCLC.
MATERIALS AND METHODS:
IGF1R and EGFR copy number gain (CNG) were tested by fluorescence in situ hybridization (FISH) and protein expression by immunohistochemistry (IHC) in 125 stage I-II-IIIA NSCLC patients.
RESULTS:
Fourty-six tumors (40.3 %) were IGF1R FISH-positive (FISH+), and 76 (67.2 %) were EGFR FISH+. Tumors with concomitant IGF1R/EGFR FISH+ were observed in 34 cases (30.1 %). IGF1R and EGFR FISH+ were associated with SCC histology (p = 0.01 and p = 0.04, respectively). IGF1R and EGFR protein over-expression (IHC+) were detected in 45 (36.0 %) and 69 (55.2 %) cases, respectively. Tumors with concomitant IGF1R/EGFR IHC+ were detected in 31 (24.8 %) patients. IGF1R/EGFR FISH+ and IGF1R/EGFR IHC+ were significantly associated (χ(2) = 4.02, p = 0.04). Patients with IGF1R/EGFR FISH+ and IGF1R/EGFR IHC+ were associated with shorter disease-free survival (DFS) (p = 0.05 and p = 0.05, respectively). Patients with concomitant IGF1R/EGFR FISH+/IHC+ had a worse DFS and overall survival (p = 0.005 and p = 0.01, respectively). The multivariate model confirmed that IGF1R/EGFR FISH+/IHC+ (hazard ratio (HR), 4.08; p = 0.01) and tumor stage (II-III vs I) (HR, 4.77; p = 0.003) were significantly associated with worse DFS.
CONCLUSIONS:
IGF1R/EGFR FISH+ correlates with IGF1R/EGFR IHC+. IGF1R/EGFR FISH+/IHC+ is an independent negative prognostic factor for DFS in early NSCLC. These features may have important implications for future anti-IGF1R therapeutic approaches
Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors
Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to Laser Capture Microdissection and Reverse Phase Protein Microarray analysis to explore the expression/activation levels of 150 signaling proteins along with coactivation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p < 0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02).This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications
Dramatic Response to Lorlatinib in a Heavily Pretreated Lung Adenocarcinoma Patient Harboring G1202R Mutation and a Synchronous Novel R1192P ALK Point Mutation
Not required (letter to editor
Association of Superficial White Matter Alterations with Cerebrospinal Fluid Biomarkers and Cognitive Decline in Neurodegenerative Dementia
Background: Superficial white matter (SWM) alterations correlated with cognitive decline have been described in Alzheimer's disease (AD). Objective: The study aims to extend the investigation of the SWM alterations to AD and non-AD neurodegenerative dementia (ND) and explore the relationship with cerebrospinal fluid (CSF) biomarkers and clinical data. Methods: From a database of 323 suspected dementia cases, we retrospectively recruited 55 ND with abnormal amyloid-β42 (AD) and 38 ND with normal amyloid-β42 (non-AD) and collected clinical data, CSF biomarkers, and magnetic resonance images. Ten healthy controls (HC) were recruited for imaging and Mini-Mental State Examination (MMSE). Diffusion tensor imaging (DTI) measurements were performed in the lobar SWM regions and Kruskal Wallis tests were used for among-group comparison. Spearman's correlation tests were performed between DTI measures, CSF biomarkers, and clinical data. Results: AD and non-AD showed significant differences in the DTI measures across the SWM compared to HC. Significant differences between AD and non-AD were detected in the left parietal lobe. DTI measures correlated with amyloid-β42 and MMSE diffusely in the SWM, less extensively with total-tau and phosphorylated tau, and with disease duration in the parietal lobe bilaterally. Conclusion: Widespread SWM alterations occur in both AD and non-AD ND and AD shows appreciably more severe alterations in the parietal SWM. Notably, the alterations in the SWM are strongly linked not only to the cognitive decline but also to the diagnostic CSF biomarkers. Further studies are encouraged to evaluate the DTI measures in the SWM as in vivo non-invasive biomarkers in the preclinical phase
Concomitant high gene copy number and protein overexpression of IGF1R and EGFR negatively affect disease-free survival of surgically resected non-small-cell-lung cancer patients.
BACKGROUND:
Insulin-like growth factor 1 receptor (IGF1R) represents a novel molecular target in non-small-cell-lung cancer (NSCLC). IGF1R and epidermal growth factor receptor (EGFR) activation are essential to mediate tumor cell survival, proliferation, and invasion. This study investigates the prognostic role of IGF1R and EGFR in surgically resected NSCLC.
MATERIALS AND METHODS:
IGF1R and EGFR copy number gain (CNG) were tested by fluorescence in situ hybridization (FISH) and protein expression by immunohistochemistry (IHC) in 125 stage I-II-IIIA NSCLC patients.
RESULTS:
Fourty-six tumors (40.3%) were IGF1R FISH-positive (FISH+), and 76 (67.2%) were EGFR FISH+. Tumors with concomitant IGF1R/EGFR FISH+ were observed in 34 cases (30.1%). IGF1R and EGFR FISH+ were associated with SCC histology (p = 0.01 and p = 0.04, respectively). IGF1R and EGFR protein over-expression (IHC+) were detected in 45 (36.0%) and 69 (55.2%) cases, respectively. Tumors with concomitant IGF1R/EGFR IHC+ were detected in 31 (24.8%) patients. IGF1R/EGFR FISH+ and IGF1R/EGFR IHC+ were significantly associated (\u3c7(2) = 4.02, p = 0.04). Patients with IGF1R/EGFR FISH+ and IGF1R/EGFR IHC+ were associated with shorter disease-free survival (DFS) (p = 0.05 and p = 0.05, respectively). Patients with concomitant IGF1R/EGFR FISH+/IHC+ had a worse DFS and overall survival (p = 0.005 and p = 0.01, respectively). The multivariate model confirmed that IGF1R/EGFR FISH+/IHC+ (hazard ratio (HR), 4.08; p = 0.01) and tumor stage (II-III vs I) (HR, 4.77; p = 0.003) were significantly associated with worse DFS.
CONCLUSIONS:
IGF1R/EGFR FISH+ correlates with IGF1R/EGFR IHC+. IGF1R/EGFR FISH+/IHC+ is an independent negative prognostic factor for DFS in early NSCLC. These features may have important implications for future anti-IGF1R therapeutic approaches