1,291 research outputs found

    Rf for cyclotrons

    Get PDF
    The following paper will give an overview of cyclotron-specific RF design: it will deal with classical RF structures (Dees), which are mostly based on a λ/4 or λ/2 coaxial line design, and extend to cavity concepts deviating from conventional cyclotron resonators. Such cavities usually can only be employed in Separated Sector Cyclotrons (SSCs), because their designs ask for more space for the RF cavities. Modelling methods, mechanical design and some results are also presented. Specific characteristics and requirements for RF power amplifiers are introduced; illustrated by two types of power amplifiers. Finally, basic concepts and prerequisites for control systems are presented

    Optimal Alignment Sensing of a Readout Mode Cleaner Cavity

    Get PDF
    Critically coupled resonant optical cavities are often used as mode cleaners in optical systems to improve the signal to noise ratio (SNR) of a signal that is encoded as an amplitude modulation of a laser beam. Achieving the best SNR requires maintaining the alignment of the mode cleaner relative to the laser beam on which the signal is encoded. An automatic alignment system which is primarily sensitive to the carrier field component of the beam will not, in general, provide optimal SNR. We present an approach that modifies traditional dither alignment sensing by applying a large amplitude modulation on the signal field, thereby producing error signals that are sensitive to the signal sideband field alignment. When used in conjunction with alignment actuators, this approach can improve the detected SNR; we demonstrate a factor of 3 improvement in the SNR of a kilometer-scale detector of the Laser Interferometer Gravitational-wave Observatory. This approach can be generalized to other types of alignment sensors

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Adaptive thermal compensation of test masses in advanced LIGO

    Get PDF
    As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument's sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ~2007, increasing strain sensitivity through improved suspensions and test mass substrates, active seismic isolation, and higher input laser power. Even with the highest quality optics available today, however, finite absorption of laser power within transmissive optics, coupled with the tremendous amount of optical power circulating in various parts of the interferometer, result in critical wavefront deformations which would cripple the performance of the instrument. Discussed is a method of active wavefront correction via direct thermal actuation on optical elements of the interferometer. A simple nichrome heating element suspended off the face of an affected optic will, through radiative heating, remove the gross axisymmetric part of the original thermal distortion. A scanning heating laser will then be used to remove any remaining non-axisymmetric wavefront distortion, generated by inhomogeneities in the substrate's absorption, thermal conductivity, etc. A proof-of-principle experiment has been constructed at MIT, selected data of which are presented.Comment: 11 pages, 7 figures, submitted to Classical and Quantum Gravit

    Control sideband generation for dual-recycled laser interferometric gravitational wave detectors

    Get PDF
    We present a discussion of the problems associated with generation of multiple control sidebands for length sensing and control of dual-recycled, cavity-enhanced Michelson interferometers and the motivation behind more complicated sideband generation methods. We focus on the Mach–Zehnder interferometer as a topological solution to the problem and present results from tests carried out at the Caltech 40 m prototype gravitational wave detector. The consequences for sensing and control for advanced interferometry are discussed, as are the implications for future interferometers such as Advanced LIGO

    Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors

    Get PDF
    We present an approach to experimentally evaluate gravity gradient noise, a potentially limiting noise source in advanced interferometric gravitational wave (GW) detectors. In addition, the method can be used to provide sub-percent calibration in phase and amplitude of modern interferometric GW detectors. Knowledge of calibration to such certainties shall enhance the scientific output of the instruments in case of an eventual detection of GWs. The method relies on a rotating symmetrical two-body mass, a Dynamic gravity Field Generator (DFG). The placement of the DFG in the proximity of one of the interferometer's suspended test masses generates a change in the local gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure

    Photon pressure induced test mass deformation in gravitational-wave detectors

    Get PDF
    A widely used assumption within the gravitational-wave community has so far been that a test mass acts like a rigid body for frequencies in the detection band, i.e. for frequencies far below the first internal resonance. In this article we demonstrate that localized forces, applied for example by a photon pressure actuator, can result in a non-negligible elastic deformation of the test masses. For a photon pressure actuator setup used in the gravitational wave detector GEO600 we measured that this effect modifies the standard response function by 10% at 1 kHz and about 100% at 2.5 kHz

    New Photodetection Method Using Unbalanced Sidebands for Squeezed Quantum Noise in Gravitational Wave Interferometer

    Full text link
    Homodyne detection is one of the ways to circumvent the standard quantum limit for a gravitational wave detector. In this paper it will be shown that the same quantum-non-demolition effect using homodyne detection can be realized by heterodyne detection with unbalanced RF sidebands. Furthermore, a broadband quantum-non-demolition readout scheme can also be realized by the unbalanced sideband detection.Comment: 9 pages, 5 figure

    Performance of a 1200m long suspended Fabry-Perot cavity

    Full text link
    Using one arm of the Michelson interferometer and the power recycling mirror of the interferometric gravitational wave detector GEO600, we created a Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment was to gather first experience with the main optics, its suspensions and the corresponding control systems. The residual displacement of a main mirror is about 150 nm rms. By stabilising the length of the 1200 m long cavity to the pre-stabilised laser beam we achieved an error point frequency noise of 0.1 mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the reliable performance of all included subsystems by several 10-hour-periods of continuous stable operation. Thus the full frequency stabilisation scheme for GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure
    • …
    corecore