1,038 research outputs found

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Status of the joint LIGO--TAMA300 inspiral analysis

    Full text link
    We present the status of the joint search for gravitational waves from inspiraling neutron star binaries in the LIGO Science Run 2 and TAMA300 Data Taking Run 8 data, which was taken from February 14 to April 14, 2003, by the LIGO and TAMA collaborations. In this paper we discuss what has been learned from an analysis of a subset of the data sample reserved as a ``playground''. We determine the coincidence conditions for parameters such as the coalescence time and chirp mass by injecting simulated Galactic binary neutron star signals into the data stream. We select coincidence conditions so as to maximize our efficiency of detecting simulated signals. We obtain an efficiency for our coincident search of 78 %, and show that we are missing primarily very distant signals for TAMA300. We perform a time slide analysis to estimate the background due to accidental coincidence of noise triggers. We find that the background triggers have a very different character from the triggers of simulated signals.Comment: 10 page, 8 figures, accepted for publication in Classical and Quantum Gravity for the special issue of the GWDAW9 Proceedings ; Corrected typos, minor change

    Control sideband generation for dual-recycled laser interferometric gravitational wave detectors

    Get PDF
    We present a discussion of the problems associated with generation of multiple control sidebands for length sensing and control of dual-recycled, cavity-enhanced Michelson interferometers and the motivation behind more complicated sideband generation methods. We focus on the Mach–Zehnder interferometer as a topological solution to the problem and present results from tests carried out at the Caltech 40 m prototype gravitational wave detector. The consequences for sensing and control for advanced interferometry are discussed, as are the implications for future interferometers such as Advanced LIGO

    X-ray emission during the muonic cascade in hydrogen

    Get PDF
    We report our investigations of X rays emitted during the muonic cascade in hydrogen employing charge coupled devices as X-ray detectors. The density dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha, K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of liquid hydrogen density. In this density region collisional processes dominate the cascade down to low energy levels. A comparison with recent calculations is given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter

    Chiral Perturbation Theory and the pp -> pp pi0 Reaction Near Threshold

    Full text link
    A chiral-perturbative consideration of the near-threshold pp -> pp pi0 reaction indicates that the pion-rescattering term has a substantial energy and momentum dependence. The existing calculations that incorporate this dependence give pion rescattering contributions significantly larger than those of the conventional treatment, and this enhanced rescattering term interferes destructively with the one-body impulse term, leading to theoretical cross sections that are much smaller than the observed values. However, since the existing calculations are based on coordinate-space representation, they involve a number of simplifying assumptions about the energy-momentum flow in the rescattering diagram, even though the delicate interplay between the one-body and two-body terms makes it desirable to avoid these kinematical assumptions. We carry out here a momentum-space calculation that retains the energy-momentum dependence of the vertices as predicted by chiral perturbation theory. Our improved treatment increases the rescattering amplitude by a factor of 3 over the value obtained in the r-space calculations. The pp -> pp pi0 transition amplitude, which is now dominated by the rescattering term, leads to the cross section much larger than what was reported in the approximate r-space calculations. Thus, the extremely small cross sections obtained in the previous chiral perturbative treatments of this reaction should be considered as an accidental consequence of the approximations employed rather than a general feature.Comment: 25 pages,REVTEX, 5 ps figure

    Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector

    Full text link
    The upcoming European design study `Einstein gravitational-wave Telescope' represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this article, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational wave detector.Comment: Minor corrections to the main text and two additional appendices. 14 pages, 6 figure

    Long term study of the seismic environment at LIGO

    Full text link
    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.Comment: To be published in Classical and Quantum Gravity. 24 pages, 15 figure

    Determination of the pion-nucleon coupling constant and scattering lengths

    Get PDF
    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.11+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0012+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0895+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pion-mass. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.Comment: 27 pages, 5 figures, submitted to Phys. Rev. C, few modifications and clarifications, no change in substance of the pape
    • …
    corecore