28 research outputs found

    Common variations in noncoding regions of the human natriuretic peptide receptor A gene have quantitative effects

    Get PDF
    Genetic susceptibility to common conditions, such as essential hypertension and cardiac hypertrophy, is probably determined by various combinations of small quantitative changes in the expression of many genes. NPR1, coding for natriuretic peptide receptor A (NPRA), is a potential candidate, because NPRA mediates natriuretic, diuretic, and vasorelaxing actions of the nariuretic peptides, and because genetically determined quantitative changes in the expression of this gene affect blood pressure and heart weight in a dose-dependent manner in mice. To determine whether there are common quantitative variants in human NPR1, we have sequenced the entire human NPR1 gene and identified 10 polymorphic sites in its non-coding sequence by using DNA from 34 unrelated human individuals. Five of the sites are single nucleotide polymorphisms; the remaining five are length polymorphisms, including a highly variable complex dinucleotide repeat in intron 19. There are three common haplotypes 5’ to this dinucleotide repeat and three 3’ to it, but the 5’ haplotypes and 3’ haplotypes appear to be randomly associated. Transient expression analysis in cultured cells of reporter plasmids with the proximal promoter sequences of NPR1 and its 3’ untranslated regions showed that these polymorphisms have functional effects. We conclude that common NPR1 alleles can alter expression of the gene as much as two-fold and could therefore significantly affect genetic risks for essential hypertension and cardiac hypertrophy in humans

    Suitability of Thoracic Cytology for New Therapeutic Paradigms in Non-small Cell Lung Carcinoma: High Accuracy of Tumor Subtyping and Feasibility of EGFR and KRAS Molecular Testing

    Get PDF
    Introduction:The two essential requirements for pathologic specimens in the era of personalized therapies for non-small cell lung carcinoma (NSCLC) are accurate subtyping as adenocarcinoma (ADC) versus squamous cell carcinoma (SqCC) and suitability for EGFR and KRAS molecular testing. The aim of this study was to comprehensively review the performance of cytologic specimens for the above two goals in a high-volume clinical practice.Methods:Subtyping of primary lung carcinomas by preoperative cytology was correlated with subsequent resection diagnoses during a 1-year period (n = 192). The contribution of various clinicopathologic parameters to subtyping accuracy and utilization of immunohistochemistry (IHC) for NSCLC subtyping were analyzed. In addition, the performance of cytologic specimens submitted for EGFR/KRAS molecular testing during a 1-year period (n = 128) was reviewed.Results:Of the 192 preoperative cytology diagnoses, tumor subtype was definitive versus favored versus unclassified in 169 (88%) versus 15 (8%) versus 8 (4%) cases, respectively. Overall accuracy of cytologic tumor subtyping (concordance with histology) was 93% and accuracy of definitive diagnoses 96%. For a group of patients with ADC and SqCC (n = 165), the rate of unclassified cytologic diagnoses was 3% and overall accuracy 96%. IHC was used for subtyping of 9% of those cases, yielding 100% accuracy. The strongest predictors of difficulty in subtyping of ADC and SqCC were poor differentiation (p = 0.0004), low specimen cellularity (p = 0.019), and squamous histology (p = 0.003). Of 128 cytologic specimens submitted for molecular testing, 126 (98%) were suitable for analysis, revealing EGFR and KRAS mutations in 31 (25%) and 25 (20%) cases, respectively.Conclusions:Cytologic subtyping of NSCLC is feasible and accurate, particularly when morphologic assessment is combined with IHC. Furthermore, routine cytologic specimens can be successfully used for EGFR/KRAS mutation analysis. Our data strongly support the suitability of cytologic specimens for the new therapeutic paradigms in NSCLC

    Viral Response to Chemotherapy in Endemic Burkitt Lymphoma

    Get PDF
    Some Epstein-Barr virus (EBV)-directed therapies are predicted to be effective only when lytic viral replication occurs. We studied whether cyclophosphamide chemotherapy induces EBV to switch from latent to lytic phases of infection in a series of EBV-associated Burkitt lymphomas

    Ketohexokinase-mediated fructose metabolism is lost in hepatocellular carcinoma and can be leveraged for metabolic imaging

    Get PDF
    The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging
    corecore