50 research outputs found

    Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer

    Get PDF
    PurposeAdvanced thyroid cancer responds poorly to most therapies. New therapies and combinations are needed. The aim of this study was to examine both in vitro and in vivo activity of two relatively new histone deacetylase inhibitors (HDACIs), belinostat and panobinostat, and a variety of tyrosine kinase inhibitors (TKIs) against a panel of nine human thyroid cancer cell lines.MethodsThe anti-proliferative activity and the effects of HDACIs, TKIs and their combinations on thyroid cancer cells were determined by cytotoxicity assays, microarray and immunoblot analyses. Synergism between HDACIs and TKIs was assessed by the median effects model of Chou-Talalay (Calcusyn(®)).ResultsBelinostat and panobinostat were active against the thyroid cancer cell lines irrespective of their mutational composition, and belinostat was effective in preventing growth of human thyroid cancer xenografts in immunodeficient mice. Further studies showed that both HDACIs induced apoptosis. HDACI also elevated acetylated histone 3, p21(Waf), and PARP, and decreased levels of phosphorylated ERK and AKT (Ser473). RNA assay analysis suggested both HDACIs modulated genes associated with the cell cycle, DNA damage and apoptosis. Most of the TKI (pazopanib, motesanib, sorafenib and dasatinib) were either inactive in vitro or were active only at high doses. However, the novel combinations of either pazopanib or dasatinib TKIs with either belinostat or panobinostat synergistically inhibited cell growth of thyroid cancer cells in vitro.ConclusionsIn summary, these HDACIs either alone or combined with selected TKIs may have a role in treatment of aggressive thyroid cancer

    Valosin-Containing Protein/p97 as a Novel Therapeutic Target in Acute Lymphoblastic Leukemia

    Get PDF
    B acute lymphoblastic leukemia (B-ALL) cells are distinctively vulnerable to endoplasmic reticulum (ER) stress. Recently, inhibition of p97 was shown to induce ER stress and subsequently cell death in solid tumors and in multiple myeloma. We investigated the role of a novel, orally available, p97 inhibitor (CB-5083; Cleave Biosciences) in B-ALL. CB-5083 induced a significant reduction in viability in 10 human B-ALL cell lines, harboring the most common fusion-genes involved in pediatric and adult B-ALL, with IC50s ranging from 0.34 to 0.76 \ub5M. Moreover, CB-5083 significantly reduced the colony formation of OP1 and NALM6 cells. Early and strong induction of apoptosis was demonstrated in BALL1 and OP1 cells, together with a robust cleavage of PARP. CB-5083 induced ER stress, as documented through: 1) prominent expression of chaperones (GRP78, GRP94, PDI, DNAJC3, and DNAJB9); 2) increased activation of IRE1-alpha, as demonstrated by the splicing of XBP1; and 3) activation of PERK, which resulted in a significant overexpression of CHOP, and its downstream genes. CB-5083 reduced the viability also in GRP78-/-, GRP94-/-, and XBP1-/- cells, suggesting that none of these proteins alone was strictly required for CB-5083 activity. Moreover, we showed that the absence of XBP1 (XBP1-/-) increased the sensitivity to CB-5083, leading to the hypothesis that XBP1 splicing counteracts the activity of CB-5083, probably mitigating ER stress. Finally, vincristine was synergistic with CB-5083 in both BALL1 and OP1 cells. In summary, the targeting of p97 with CB-5083 is a novel promising therapeutic approach that should be further evaluated in B-ALL

    A Role for the Clock Gene Per1

    Full text link

    Purification and Cloning of Differential Display Products

    No full text
    corecore