14 research outputs found

    Rôle des motifs N-glycanniques et des protéines chaperons sur la maturation et le transport intracellulaire du récepteur de la thyrotropine

    No full text
    AIX-MARSEILLE2-BU MĂ©d/Odontol. (130552103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Association of the thyrotropin receptor with calnexin, calreticulin and BiP. Efects on the maturation of the receptor.

    No full text
    International audienceThe thyrotropin receptor (TSHR) is a member of the G protein-coupled receptor superfamily. It has by now been clearly established that the maturation of the glycoproteins synthesized in the endoplasmic reticulum involves interactions with molecular chaperones, which promote the folding and assembly of the glycoproteins. In this study, we investigated whether calnexin (CNX), calreticulin (CRT) and BiP, three of the main molecular chaperones present in the endoplasmic reticulum, interact with the TSHR and what effects these interactions might have on the folding of the receptor. In the first set of experiments, we observed that in a K562 cell line expressing TSHR, about 50% of the receptor synthesized was degraded by the proteasome after ubiquitination. In order to determine whether TSHR interact with CNX, CRT and BiP, coimmunoprecipitation experiments were performed. TSHR was found to be associated with all three molecular chaperones. To study the role of the interactions between CNX and CRT and the TSHR, we used castanospermine, a glucosidase I and II inhibitor that blocks the interactions between these chaperones and glycoproteins. In K562 cells expressing the TSHR, these drugs led to a faster degradation of the receptor, which indicates that these interactions contribute to stabilizing the receptor after its synthesis. The overexpression of calnexin and calreticulin in these cells stabilizes the receptor during the first hour after its synthesis, whereas the degradation of TSHR increased in a cell line overexpressing BiP and the quantity of TSHR able to acquire complex type oligosaccharides decreased. These results show that calnexin, calreticulin and BiP all interact with TSHR and that the choice made between these two chaperone systems is crucial because each of them has distinct effects on the folding and stability of this receptor at the endoplasmic reticulum level

    Calnexin and Calreticulin Binding to Human Thyroperoxidase Is Required for Its First Folding Step(s) But Is Not Sufficient to Promote Efficient Cell Surface Expression*

    No full text
    International audienceHuman thyroperoxidase (hTPO) is a type I transmembrane-bound heme-containing glycoprotein that catalyzes the synthesis of thyroid hormones. In a previous study we stably expressed hTPO in Chinese hamster ovary cells and observed that after the synthesis, only 20% of the hTPO molecules were recognized by a monoclonal antibody (mAb 15) directed against a conformational structure, and that only 2% were able to reach the cell surface. In the present study it was proposed to determine how calnexin (CNX) and calreticulin (CRT) contribute to the folding of hTPO. Sequential immunoprecipitation was performed using anti-CNX or anti-CRT followed by anti-hTPO antibodies, and the results showed that CNX and CRT were associated with hTPO. Inhibiting the interactions between CNX or CRT and hTPO using castanospermine greatly reduced the first step(s) in the hTPO folding process. Under these conditions, the half-life of this enzyme was greatly reduced (2.5 vs. 17 h in the control experiments), and hTPO was degraded via the proteasome pathway. This reduced the rate of hTPO transport to the cell surface. Overexpression of CNX or CRT into the hTPO-CHO cells was found to enhance the first hTPO folding step(s) by 20-60%, but did not increase the level of hTPO present at the cell surface. All in all, these findings provide evidence that CNX and CRT are crucial to the first step(s) in hTPO folding, but that interactions with other molecular chaperones are required for the last folding steps to take place

    Competition between calnexin and BiP in the endoplasmic reticulum can lead to the folding or degradation of human thyroperoxidase

    No full text
    Previous studies on the fate of human thyroperoxidase (hTPO) molecules have shown that, after being synthesized, these glycoproteins interact with calnexin and calreticulin and that only some of them are able to acquire a partially folded structure. The aim of the present study was to further investigate the potential role of BiP, another major protein chaperon. Co-immunoprecipitation experiments showed the occurrence of interactions between hTPO and BiP. Pulse-chase studies showed that, when hTPO was expressed in a Chinese hamster ovary cell line overexpressing 5 times more BiP than the parent cells, the rate of hTPO recognized by a monoclonal antibody directed against a conformational structure decreased by 50% after 5 h of chase. Overexpression of the BiP-ATPase mutant G37T also led to a decrease in the correct folding rate of hTPO. When this protein was pulsed in the presence of 35S-(Met + Cys) and the reducing agent dithiotreitol and then chased in a culture medium without dithiothreitol, a 2.5-fold decrease in the correct folding rate was observed in cells overexpressing BiP, whereas co-overexpression of calnexin and Erp57 led to an increase in both the unfolded and partially folded form of hTPO after the pulse step. All of these findings show that BiP and calnexin have opposite effects on the folding behavior of hTPO and that the action of specific molecular chaperones may therefore crucially determine the fate of glycoproteins

    Identification of thyroglobulin domain(s) involved in cell-surface binding and endocytosis.

    No full text
    International audienceThyroglobulin (Tg) binds to cell surfaces through various binding sites of high, moderate and low affinity. We have previously shown that binding with low to moderate affinity is pH dependent, selective, but not tissue specific. To identify the regions of Tg involved in this cell surface binding, we studied the binding of (125)I-labeled cyanogen bromide peptides from human Tg to cell surfaces of thyroid cells (inside-out follicles) and of CHO cells. Electrophoretic analysis of cell homogenates after binding of native or of reduced and alkylated (125)I-labeled peptides showed that three peptides, P1, P2 and P3, were always associated with the cells. Sequence analysis allowed the identification of P1 (Ser-2445 to Met-2596 or Met-2610) and P2 (Phe-2156 to Met-2306). P3 proved to be a mixture of several peptides among which two were identified: P3-1 (Cys-1306 to Met-1640) and P3-2 (Cys-2035 to Met-2413) which includes P2. P1, P2 and P3-2 are entirely (P1) or partly (P2 and P3-2) located in the C-terminal domain of Tg homologous with acetylcholinesterase. The smallest peptides, P1 and P2, were purified by preparative electrophoresis. They both displayed strong binding properties towards cell surfaces. Inhibition experiments of (125)I-labeled Tg binding by P1 or P2 indicated that they were involved in Tg binding to cell surfaces. All the other peptides tested for their binding abilities were either not or only poorly involved in Tg binding to cell surfaces, which suggested that P1 and P2 are major Tg sites of binding to cell surfaces. These two peptides are not involved in the binding of Tg to the known Tg 'receptors' described in the literature, to which recycling, transcytosis and regulation functions have been ascribed. Thus they are potential tools to identify cell surface components involved in the process of Tg endocytosis leading to lysosomal degradation

    Role of complex asparagine-linked oligosaccharides in the expression of a functional thyrotropin receptor.

    No full text
    International audienceTo evaluate the functional role of complex asparagine-linked oligosaccharides of the human thyrotropin receptor (TSHR), a Chinese hamster ovary cell line (JP09) and a K562 cell line (K562-TSHR) expressing this receptor were treated with deoxymannojirimycin (dMM), a mannosidase I inhibitor. dMM blocks the formation of complex-type structures and leads to the formation of high-mannose-type structures. Treatment of cells with dMM led to a decrease in the number of thyrotropin (TSH)-binding sites at the cell surface. Detection of the TSHR at the cell surface using a monoclonal antibody directed against the A subunit showed that this decrease was not due to a decrease in the number of TSHRs expressed at the cell surface. However the recognition of TSHR by a monoclonal antibody directed against the C peptide was greatly decreased. On immunoblotting, after deglycosylation using peptide N-glycanase F, the A subunit was visualized as a doublet (36 and 41 kDa). In control cells the species of higher molecular mass was more abundant whereas after dMM treatment the species of lower molecular mass became more abundant. This difference in molecular mass between the two peptides is compatible with the removal of the C peptide. In conclusion, the results show that inhibition of complex-type structure formation leads to (i) an incapacity for TSHR to bind TSH, without affecting its intracellular transport and (ii) an increase of TSHR susceptibility to proteases that remove the C peptide. We then hypothesized that removal of the C peptide could contribute to the formation of a non-functional TSHR

    Identification of thyroglobulin domain(s) involved in cell-surface binding and endocytosis.

    No full text
    International audienceThyroglobulin (Tg) binds to cell surfaces through various binding sites of high, moderate and low affinity. We have previously shown that binding with low to moderate affinity is pH dependent, selective, but not tissue specific. To identify the regions of Tg involved in this cell surface binding, we studied the binding of (125)I-labeled cyanogen bromide peptides from human Tg to cell surfaces of thyroid cells (inside-out follicles) and of CHO cells. Electrophoretic analysis of cell homogenates after binding of native or of reduced and alkylated (125)I-labeled peptides showed that three peptides, P1, P2 and P3, were always associated with the cells. Sequence analysis allowed the identification of P1 (Ser-2445 to Met-2596 or Met-2610) and P2 (Phe-2156 to Met-2306). P3 proved to be a mixture of several peptides among which two were identified: P3-1 (Cys-1306 to Met-1640) and P3-2 (Cys-2035 to Met-2413) which includes P2. P1, P2 and P3-2 are entirely (P1) or partly (P2 and P3-2) located in the C-terminal domain of Tg homologous with acetylcholinesterase. The smallest peptides, P1 and P2, were purified by preparative electrophoresis. They both displayed strong binding properties towards cell surfaces. Inhibition experiments of (125)I-labeled Tg binding by P1 or P2 indicated that they were involved in Tg binding to cell surfaces. All the other peptides tested for their binding abilities were either not or only poorly involved in Tg binding to cell surfaces, which suggested that P1 and P2 are major Tg sites of binding to cell surfaces. These two peptides are not involved in the binding of Tg to the known Tg 'receptors' described in the literature, to which recycling, transcytosis and regulation functions have been ascribed. Thus they are potential tools to identify cell surface components involved in the process of Tg endocytosis leading to lysosomal degradation
    corecore