2,884 research outputs found
Advanced control with a Cooper-pair box: stimulated Raman adiabatic passage and Fock-state generation in a nanomechanical resonator
The rapid experimental progress in the field of superconducting nanocircuits
gives rise to an increasing quest for advanced quantum-control techniques for
these macroscopically coherent systems. Here we demonstrate theoretically that
stimulated Raman adiabatic passage (STIRAP) should be possible with the
quantronium setup of a Cooper-pair box. The scheme appears to be robust against
decoherence and should be realizable even with the existing technology. As an
application we present a method to generate single-phonon states of a
nanomechnical resonator by vacuum-stimulated adiabatic passage with the
superconducting nanocircuit coupled to the resonator
Counting statistics of coherent population trapping in quantum dots
Destructive interference of single-electron tunneling between three quantum
dots can trap an electron in a coherent superposition of charge on two of the
dots. Coupling to external charges causes decoherence of this superposition,
and in the presence of a large bias voltage each decoherence event transfers a
certain number of electrons through the device. We calculate the counting
statistics of the transferred charges, finding a crossover from sub-Poissonian
to super-Poissonian statistics with increasing ratio of tunnel and decoherence
rates.Comment: 4 pages, 2 figure
Methodologies for Determining Reserve Liabilities in the Workers Compensation High Deductible Program
In this paper I describe several approaches for estimating liabilities under a high deductible program, including a proposal for a more sophisticated approach relying upon a loss distribution model. The discussion addresses several related issues dealing with deductible size and mix, absence of longterm histories, and the determination of consistent loss development factors among deductible limits. In addition, I propose several approaches for estimating aggregate loss limit charges, if any, and the asset value for associated servicing revenue
Entanglement monotones and maximally entangled states in multipartite qubit systems
We present a method to construct entanglement measures for pure states of
multipartite qubit systems. The key element of our approach is an antilinear
operator that we call {\em comb} in reference to the {\em hairy-ball theorem}.
For qubits (or spin 1/2) the combs are automatically invariant under
SL(2,\CC). This implies that the {\em filters} obtained from the combs are
entanglement monotones by construction. We give alternative formulae for the
concurrence and the 3-tangle as expectation values of certain antilinear
operators. As an application we discuss inequivalent types of genuine four-,
five- and six-qubit entanglement.Comment: 7 pages, revtex4. Talk presented at the Workshop on "Quantum
entanglement in physical and information sciences", SNS Pisa, December 14-18,
200
Structural Investigation of MscL Gating Using Experimental Data and Coarse Grained MD Simulations
The mechanosensitive channel of large conductance (MscL) has become a model system in which to understand mechanosensation, a process involved in osmoregulation and many other physiological functions. While a high resolution closed state structure is available, details of the open structure and the gating mechanism remain unknown. In this study we combine coarse grained simulations with restraints from EPR and FRET experiments to study the structural changes involved in gating with much greater level of conformational sampling than has previously been possible. We generated a set of plausible open pore structures that agree well with existing open pore structures and gating models. Most interestingly, we found that membrane thinning induces a kink in the upper part of TM1 that causes an outward motion of the periplasmic loop away from the pore centre. This previously unobserved structural change might present a new mechanism of tension sensing and might be related to a functional role in osmoregulation.The study was supported by a grant from the Australian Research Council. The simulations were carried out using computer time from iVEC and a Merit
Allocation Scheme on the NCI National Facility at the Australian National University. ED was supported by a Jean Rogerson Postgraduate scholarship and the Beryl
Henderson Memorial Grant by the Australian Federation of University Women ACT. Websites of funding agencies: http://nci.org.au/access/merit-allocationscheme/,
http://www.ivec.org/ http://www.arc.gov.au/ncgp/default.htm, http://spe.publishing.uwa.edu.au/latest/scholarships/postgraduate/rogerson, http://www.
afgw.org.au/what-we-do/scholarships-2/ The authors hereby confirm that the funding agencies had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript
- …