51 research outputs found

    Development and testing of a database of NIH research funding of AAPM members: A report from the AAPM Working Group for the Development of a Research Database (WGDRD).

    Get PDF
    PURPOSE: To produce and maintain a database of National Institutes of Health (NIH) funding of the American Association of Physicists in Medicine (AAPM) members, to perform a top-level analysis of these data, and to make these data (hereafter referred to as the AAPM research database) available for the use of the AAPM and its members. METHODS: NIH-funded research dating back to 1985 is available for public download through the NIH exporter website, and AAPM membership information dating back to 2002 was supplied by the AAPM. To link these two sources of data, a data mining algorithm was developed in Matlab. The false-positive rate was manually estimated based on a random sample of 100 records, and the false-negative rate was assessed by comparing against 99 member-supplied PI_ID numbers. The AAPM research database was queried to produce an analysis of trends and demographics in research funding dating from 2002 to 2015. RESULTS: A total of 566 PI_ID numbers were matched to AAPM members. False-positive and -negative rates were respectively 4% (95% CI: 1-10%, N = 100) and 10% (95% CI: 5-18%, N = 99). Based on analysis of the AAPM research database, in 2015 the NIH awarded USD110MtomembersoftheAAPM.ThefourNIHinstituteswhichhistoricallyawardedthemostfundingtoAAPMmembersweretheNationalCancerInstitute,NationalInstituteofBiomedicalImagingandBioengineering,NationalHeartLungandBloodInstitute,andNationalInstituteofNeurologicalDisordersandStroke.In2015,over85USD 110M to members of the AAPM. The four NIH institutes which historically awarded the most funding to AAPM members were the National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Heart Lung and Blood Institute, and National Institute of Neurological Disorders and Stroke. In 2015, over 85% of the total NIH research funding awarded to AAPM members was via these institutes, representing 1.1% of their combined budget. In the same year, 2.0% of AAPM members received NIH funding for a total of 116M, which is lower than the historic mean of $120M (in 2015 USD). CONCLUSIONS: A database of NIH-funded research awarded to AAPM members has been developed and tested using a data mining approach, and a top-level analysis of funding trends has been performed. Current funding of AAPM members is lower than the historic mean. The database will be maintained by members of the Working group for the development of a research database (WGDRD) on an annual basis, and is available to the AAPM, its committees, working groups, and members for download through the AAPM electronic content website. A wide range of questions regarding financial and demographic funding trends can be addressed by these data. This report has been approved for publication by the AAPM Science Council

    Technical aspects of dental CBCT: state of the art

    No full text
    As CBCT is widely used in dental and maxillofacial imaging, it is important for users as well as referring practitioners to understand the basic concepts of this imaging modality. This review covers the technical aspects of each part of the CBCT imaging chain. First, an overview is given of the hardware of a CBCT device. The principles of cone beam image acquisition and image reconstruction are described. Optimization of imaging protocols in CBCT is briefly discussed. Finally, basic and advanced visualization methods are illustrated. Certain topics in these review are applicable to all types of radiographic imaging (e.g. the principle and properties of an X-ray tube), others are specific for dental CBCT imaging (e.g. advanced visualization techniques).status: publishe

    Cone-Beam Micro-CT System Based on LabVIEW Software

    No full text
    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument’s Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers
    • …
    corecore