1,151 research outputs found

    Multidimensional hydrodynamic simulations of the hydrogen injection flash

    Full text link
    The injection of hydrogen into the convection shell powered by helium burning during the core helium flash is commonly encountered during the evolution of metal-free and extremely metal-poor low-mass stars. With specifically designed multidimensional hydrodynamic simulations, we aim to prove that an entropy barrier is no obstacle for the growth of the helium-burning shell convection zone in the helium core of a metal-rich Pop I star, i.e. convection can penetrate into the hydrogen-rich layers for these stars, too. We further study whether this is also possible in one-dimensional stellar evolutionary calculations. Our hydrodynamical simulations show that the helium-burning shell convection zone in the helium core moves across the entropy barrier and reaches the hydrogen-rich layers. This leads to mixing of protons into the hotter layers of the core and to a rapid increase of the nuclear energy production at the upper edge of the helium-burning convection shell - the hydrogen injection flash. As a result a second convection zone appears in the hydrogen-rich layers. Contrary to 1D models, the entropy barrier separating the two convective shells from each other is largely permeable to chemical transport when allowing for multidimensional flow, and consequently, hydrogen is continuously mixed deep into the helium core. We find it difficult to achieve such a behavior in one-dimensional stellar evolutionary calculations.Comment: 8 pages, 8 figures - accepted for publication in Astronomy and Astrophysics. Animations related to the manuscript can be downloaded from http://www-astro.ulb.ac.be/~mocak/index.php/Main/AnimationsHeFlas

    Simulations of Stellar Collisions Involving Pre-Main Sequence Stars

    Full text link
    In this paper, we present the results of smoothed particle hydrodynamic (SPH) simulations of collisions between pre-main sequence stars and a variety of other kinds of stars. Simulations over a range of impact parameters and velocities were performed. We find that pre-main sequence stars tend to ``wrap themselves'' around their impactor. We discuss the probable evolutionary state of products of collisions between pre-main sequence stars and pre-main sequence, main sequence, giant branch, and compact stars. The nature of the collision product does not depend strongly on the impact parameter or the velocity of the collision.Comment: Accepted by Ap

    A new stellar mixing process operating below shell convection zones following off-center ignition

    Full text link
    During most stages of stellar evolution the nuclear burning of lighter to heavier elements results in a radial composition profile which is stabilizing against buoyant acceleration, with light material residing above heavier material. However, under some circumstances, such as off-center ignition, the composition profile resulting from nuclear burning can be destabilizing, and characterized by an outwardly increasing mean molecular weight. The potential for instabilities under these circumstances, and the consequences that they may have on stellar structural evolution, remain largely unexplored. In this paper we study the development and evolution of instabilities associated with unstable composition gradients in regions which are initially stable according to linear Schwarzschild and Ledoux criteria. In particular, we explore the mixing taking place under various conditions with multi-dimensional hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 \Msun star, the core carbon flash in a 9.3\,\Msun star, and of oxygen shell burning in a star with a mass of 23\,\Msun. The results of our simulations reveal a mixing process associated with regions having outwardly increasing mean molecular weight that reside below convection zones. The mixing is not due to overshooting from the convection zone, nor is it due directly to thermohaline mixing which operates on a timescale several orders of magnitude larger than the simulated flows. Instead, the mixing appears to be due to the presence of a wave field induced in the stable layers residing beneath the convection zone which enhances the mixing rate by many orders of magnitude and allows a thermohaline type mixing process to operate on a dynamical, rather than thermal, timescale. We discuss our results in terms of related laboratory phenomena and associated theoretical developments.Comment: accepted for publication in Astrophysical Journal, 9 pages, 8 figure

    Hydrodynamic simulations of shell convection in stellar cores

    Full text link
    Shell convection driven by nuclear burning in a stellar core is a common hydrodynamic event in the evolution of many types of stars. We encounter and simulate this convection (i) in the helium core of a low-mass red giant during core helium flash leading to a dredge-down of protons across an entropy barrier, (ii) in a carbon-oxygen core of an intermediate-mass star during core carbon flash, and (iii) in the oxygen and carbon burning shell above the silicon-sulfur rich core of a massive star prior to supernova explosion. Our results, which were obtained with the hydrodynamics code HERAKLES, suggest that both entropy gradients and entropy barriers are less important for stellar structure than commonly assumed. Our simulations further reveal a new dynamic mixing process operating below the base of shell convection zones.Comment: 8 pages, 3 figures .. submitted to a proceedings of conference about "Red Giants as Probes of the Structure and Evolution of the Milky Way" which has taken place between 15-17 November 2010 in Rom

    Thermohaline mixing in evolved low-mass stars

    Full text link
    Thermohaline mixing has recently been proposed to occur in low-mass red giants, with large consequence for the chemical yields of low-mass stars. We investigate the role of thermohaline mixing during the evolution of stars between 1Msun and 3Msun, in comparison to other mixing processes acting in these stars. We use a stellar evolution code which includes rotational mixing, internal magnetic fields and thermohaline mixing. We confirm that during the red giant stage, thermohaline mixing has the potential to decrease the abundance of ^3He which is produced earlier on the main sequence. In our models we find that this process is working on the RGB only in stars with initial mass M \simle 1.5Msun. Moreover we report that thermohaline mixing is present also during core helium burning and beyond, and has the potential to change the surface abundances of AGB stars. While we find rotational and magnetic mixing to be negligible compared to the thermohaline mixing in the relevant layers, the interaction of thermohaline motions with the differential rotation may be essential to establish the time scale of thermohaline mixing in red giants. To explain the surface abundances observed at the bump in the luminosity function, the speed of the mixing process needs to be more than two orders of magnitude higher than in our models. However it is not clear if thermohaline mixing is the only physical process responsible for these surface abundance anomalies. Therefore, at this stage, it is not possible to calibrate the efficiency of thermohaline mixing against the observations.Comment: 10 pages - Accepted for publication in A&

    A Survey for Low-Mass Stars and Brown Dwarfs in the Eta Cha and Eps Cha Young Associations

    Full text link
    I present the results of a search for new low-mass stars and brown dwarfs in the Eta Cha and Eps Cha young associations. Within radii of 1.5 and 0.5 deg surrounding Eta Cha and Eps Cha, respectively, I have constructed color-magnitude diagrams from DENIS and 2MASS photometry and have obtained spectra of the candidate low-mass members therein. The five candidates in Eta Cha are classified as four field M dwarfs and one carbon star. No new members are found in this survey, which is complete for M_sun=0.015-0.15 according to the evolutionary models of Chabrier and Baraffe. Thus, an extended population of low-mass members is not present in Eta Cha out to four times the radius of the known membership. Meanwhile, the three candidate members of Eps Cha are classified as young stars, and thus likely members of the association, based on Li absorption and gravity-sensitive absorption lines. These new sources have spectral types of M2.25, M3.75, and M5.75, corresponding to masses of 0.45, 0.25, and 0.09 M_sun by the models of Chabrier and Baraffe. For one of these stars, intense H(alpha) emission, forbidden line emission, and strong K-band excess emission suggest the presence of accretion, an outflow, and a disk, respectively. This young star is also much fainter than expected for an association member at its spectral type, which could indicate that it is seen in scattered light. No brown dwarfs are detected in Eps Cha down to the completeness limit of 0.015 M_sun. The absence of brown dwarfs in these associations is statistically consistent with the mass functions measured in star-forming regions, which exhibit only ~2 and ~1 brown dwarfs for stellar samples at the sizes of the Eta Cha and Eps Cha associations.Comment: 19 pages, The Astrophysical Journal, 2004, v616 (December 1

    The nuclear processes responsible for the CNO synthesis

    Get PDF
    The abundances of the isotopes of the elements C, N and O are mainly affected by the cold CNO cycles in non-explosive stellar situations, or by the hot CNO chains that can develop in certain explosive sites, like classical novae. Helium burning phases can modify the composition of the ashes of the CNO transmutations through several α\alpha-capture reactions, the most famed one being 12C(a,g)16O. This contribution presents a short review of the purely nuclear physics limitations imposed on the accuracy of the predicted C, N and O yields from H-burning in non-explosive stars or novae. This analysis makes largely use of the NACRE compilation for the rates of the reactions on stable targets making up the cold CNO cycle. Some more recent rate determinations are also considered. The analysis of the impact of the rate uncertainties on the abundance predictions is conducted in the framework of a simple parametric astrophysical model. These calculations have the virtue of being a guide in the selection of the nuclear uncertainties that have to be duly analyzed in detailed model stars, particularly in order to perform meaningful confrontations between abundance observations and predictions. They are also hoped to help nuclear astrophysicists pinpointing the rate uncertainties that have to be reduced most urgently. A limited use of detailed stellar models is also made for the purpose of some specific illustrations.Comment: 9 pages including 5 figures. Conference proceedings for "CNO in the Universe", St Luc, Switzerland, 10-14 September 2002 C. Charbonnel, D. Schaerer & G. Meynet (eds) ASP Conference Seri
    • …
    corecore