45 research outputs found

    A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport

    Get PDF
    Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Identifying and Characterizing a Novel Protein Kinase STK35L1 and Deciphering Its Orthologs and Close-Homologs in Vertebrates

    Get PDF
    The human kinome containing 478 eukaryotic protein kinases has over 100 uncharacterized kinases with unknown substrates and biological functions. The Ser/Thr kinase 35 (STK35, Clik1) is a member of the NKF 4 (New Kinase Family 4) in the kinome with unknown substrates and biological functions. Various high throughput studies indicate that STK35 could be involved in various human diseases such as colorectal cancer and malaria. In this study, we found that the previously published coding sequence of the STK35 gene is incomplete. The newly identified sequence of the STK35 gene codes for a protein of 534 amino acids with a N-terminal elongation of 133 amino acids. It has been designated as STK35L (STK35 long). Since it is the first of further homologous kinases we termed it as STK35L1. The STK35L1 protein (58 kDa on SDS-PAGE), but not STK35 (44 kDa), was found to be expressed in all human cells studied (endothelial cells, HeLa, and HEK cells) and was down-regulated after silencing with specific siRNA. EGFP-STK35L1 was localized in the nucleus and the nucleolus. By combining syntenic and gene structure pattern data and homology searches, two further STK35L1 homologs, STK35L2 (previously known as PDIK1L) and STK35L3, were found. All these protein kinase homologs were conserved throughout the vertebrates. The STK35L3 gene was specifically lost during placental mammalian evolution. Using comparative genomics, we have identified orthologous sets of these three protein kinases genes and their possible ancestor gene in two sea squirt genomes. We found the full-length coding sequence of the STK35 gene and termed it as STK35L1. We identified a new third STK35-like gene, STK35L3, in vertebrates and a possible ancestor gene in sea squirt genome. This study will provide a comprehensive platform to explore the role of STK35L kinases in cell functions and human diseases

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Antidiabetic properties of dietary flavonoids: a cellular mechanism review

    Full text link
    corecore