11,073 research outputs found

    Phase Diagram of the One Dimensional S=1/2S=1/2 XXZXXZ model with Ferromagnetic nearest-neighbor and Antiferromagnetic next-nearest neighbor interactions

    Full text link
    We have studied the phase diagram of the one dimensional S=1/2S=1/2 XXZXXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest neighbor interactions. We have applied the quantum renormalization group (QRG) approach to get the stable fixed points and the running of coupling constants. The second order QRG has been implemented to get the self similar Hamiltonian. This model shows a rich phase diagram which consists of different phases which possess the quantum spin-fluid and dimer phases in addition to the classical N\'{e}el and ferromagnetic ones. The border between different phases has been shown as a projection onto two different planes in the phase space

    The elementary excitations of the exactly solvable Russian doll BCS model of superconductivity

    Full text link
    The recently proposed Russian doll BCS model provides a simple example of a many body system whose renormalization group analysis reveals the existence of limit cycles in the running coupling constants of the model. The model was first studied using RG, mean field and numerical methods showing the Russian doll scaling of the spectrum, E(n) ~ E0 exp(-l n}, where l is the RG period. In this paper we use the recently discovered exact solution of this model to study the low energy spectrum. We find that, in addition to the standard quasiparticles, the electrons can bind into Cooper pairs that are different from those forming the condensate and with higher energy. These excited Cooper pairs can be described by a quantum number Q which appears in the Bethe ansatz equation and has a RG interpretation.Comment: 36 pages, 12 figure

    How to distinguish between interacting and noninteracting molecules in tunnel junctions

    Full text link
    Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.Comment: Main text: 7 pages, 5 figures; SI: 2 pages, 2 figures. Accepted to RSC Nanoscal

    AI-powered simulation-based inference of a genuinely spatial-stochastic model of early mouse embryogenesis

    Full text link
    Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology. This is particularly intriguing in early mammalian development, where early cell-lineage differentiation arises from processes that initially appear cell-autonomous but later materialize reliably at the tissue level. In this study, we develop a multi-scale, spatial-stochastic simulator of mouse embryogenesis, focusing on inner-cell mass (ICM) differentiation in the blastocyst stage. Our model features biophysically realistic regulatory interactions and accounts for the innate stochasticity of the biological processes driving cell-fate decisions at the cellular scale. We advance event-driven simulation techniques to incorporate relevant tissue-scale phenomena and integrate them with Simulation-Based Inference (SBI), building on a recent AI-based parameter learning method: the Sequential Neural Posterior Estimation (SNPE) algorithm. Using this framework, we carry out a large-scale Bayesian inferential analysis and determine parameter sets that reproduce the experimentally observed system behavior. We elucidate how autocrine and paracrine feedbacks via the signaling protein FGF4 orchestrate the inherently stochastic expression of fate-specifying genes at the cellular level into reproducible ICM patterning at the tissue scale. This mechanism is remarkably independent of the system size. FGF4 not only ensures correct cell lineage ratios in the ICM, but also enhances its resilience to perturbations. Intriguingly, we find that high variability in intracellular initial conditions does not compromise, but rather can enhance the accuracy and precision of tissue-level dynamics. Our work provides a genuinely spatial-stochastic description of the biochemical processes driving ICM differentiation and the necessary conditions under which it can proceed robustly.Comment: 62 pages, 15 figures, 4 tables, enhancement of Introduction and Discussion section

    An Experimental Study Of The Reactions Of Excited Neon Atoms In Pure Afterglow Plasmas Using Resonance Absorption Spectrometry

    Get PDF
    Resonance absorption spectrometry has been applied in a room temperature study of the reactions of excited neon atoms in pure afterglow plasmas. The pressure range 10-500 Torr was investigated. Lorentz broadened linewidths calculated using a simple classical interruption theory allowed fractional absorption signals as large as 98% to be analyzed and absolute excited-state concentrations to be determined. The first absorption studies of the decay of 1P1 excited atoms in neon afterglows are reported. Analysis of the decay profiles of the 3P2, 3P0 and 1P1 excited states allowed quenching rate coefficients for each state to be determined and the role of neutral atoms and electrons in the afterglow relaxation to be studied. The importance of charge neutralization of the dimer ion Ne2+ as an afterglow source of 1P1 excited atoms was established in this study

    The many levels pairing Hamiltonian for two pairs

    Full text link
    We address the problem of two pairs of fermions living on an arbitrary number of single particle levels of a potential well (mean field) and interacting through a pairing force. The associated solutions of the Richardson's equations are classified in terms of a number vlv_l, which reduces to the seniority vv in the limit of large values of the pairing strength GG and yields the number of pairs not developing a collective behaviour, their energy remaining finite in the G→∞G\to\infty limit. We express analytically, through the moments of the single particle levels distribution, the collective mode energy and the two critical values Gcr+G_{\rm cr}^{+} and Gcr−G_{\rm cr}^{-} of the coupling which can exist on a single particle level with no pair degeneracy. Notably Gcr+G_{\rm cr}^{+} and Gcr−G_{\rm cr}^{-} merge when the number of single particle levels goes to infinity, where they coincide with the GcrG_{\rm cr} (when it exists) of a one pair system, not envisioned by the Richardson theory. In correspondence of GcrG_{\rm cr} the system undergoes a transition from a mean field to a pairing dominated regime. We finally explore the behaviour of the excitation energies, wave functions and pair transfer amplitudes finding out that the former, for G>Gcr−G>G_{\rm cr}^{-}, come close to the BCS predictions, whereas the latter display a divergence at GcrG_{\rm cr}, signaling the onset of a long range off-diagonal order in the system.Comment: 35 pages, 6 figures, 2 tables, to be published in EPJ

    Diagonal Ladders: A New Class of Models for Strongly Coupled Electron Systems

    Full text link
    We introduce a class of models defined on ladders with a diagonal structure generated by npn_p plaquettes. The case np=1n_p=1 corresponds to the necklace ladder and has remarkable properties which are studied using DMRG and recurrent variational ansatzes. The AF Heisenberg model on this ladder is equivalent to the alternating spin-1/spin-1/2 AFH chain which is known to have a ferrimagnetic ground state (GS). For doping 1/3 the GS is a fully doped (1,1) stripe with the holes located mostly along the principal diagonal while the minor diagonals are occupied by spin singlets. This state can be seen as a Mott insulator of localized Cooper pairs on the plaquettes. A physical picture of our results is provided by a tp−Jpt_p-J_p model of plaquettes coupled diagonally with a hopping parameter tdt_d. In the limit td→∞t_d \to \infty we recover the original t−Jt-J model on the necklace ladder while for weak hopping parameter the model is easily solvable. The GS in the strong hopping regime is essentially an "on link" Gutzwiller projection of the weak hopping GS. We generalize the tp−Jp−tdt_p-J_p-t_d model to diagonal ladders with np>1n_p >1 and the 2D square lattice. We use in our construction concepts familiar in Statistical Mechanics as medial graphs and Bratelli diagrams.Comment: REVTEX file, 22 pages (twocolumn), 35 figures inserted in text. 12 Table
    • …
    corecore