91 research outputs found

    3D-MID Technology for surface modification of polymer-based composites: a comprehensive review

    Get PDF
    The three-dimensional molded interconnected device (3D-MID) has received considerable attention because of the growing demand for greater functionality and miniaturization of electronic parts. Polymer based composite are the primary choice to be used as substrate. These materials enable flexibility in production from macro to micro-MID products, high fracture toughness when subjected to mechanical loading, and they are lightweight. This survey proposes a detailed review of different types of 3D-MID modules, also presents the requirement criteria for manufacture a polymer substrate and the main surface modification techniques used to enhance the polymer substrate. The findings presented here allow to fundamentally understand the concept of 3D-MID, which can be used to manufacture a novel polymer composite substrate

    LEMONGRASS PLANT LEAF AND CULM AS POTENTIAL SOURCES OF REINFORCEMENT FOR BIO-COMPOSITES

    Get PDF
    A possible source of natural reinforcement for bio-composites can be represented by lemongrass plant (Cymbopogon flexuosus), a clumped and perennial grass which belongs to the Poaceae family. This plant is extensively used for several applications such as pharmacology, food preservation and cosmetics but, to the best of our knowledge, few papers were published on its use as source for reinforcement of composites and no one article was focused on the comparison between lemongrass leaves and culms as potential source of natural reinforcement. To this aim, a preliminary investigation on leaf and culm fibers was carried out to compare their physical and chemical features as well as their tensile properties. Furthermore, bio-composites based on a biodegradable starch-derived matrix (MaterBi®) and lemongrass leaf and culm particles were manufactured via extrusion and compression molding. For both fillers, two compositions (i.e., 10% and 20 wt.%) were investigated in terms of morphological and mechanical properties

    Conventional and Additively Manufactured Stainless Steels: A Review

    Get PDF
    © The Indian Institute of Metals - IIM 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s12666-021-02305-7For the last three decades, enormous manufacturing processes have been widely employed in the field of transportation (aviation, automobile and marine) as well as various industrial sectors. Among the invented techniques, conventional manufacturing plays a versatile and cost effective role, but additive manufacturing (AM) possesses a more significant advantage of handling complicated parts or complex geometrical structures. The conventional processes were used from ancient times until the development of other advanced techniques. In recent development of technology, AM technology has shown a tremendous change in the manufacturing field. The process of development in AM began with polymers, then to composites and advanced to nanocomposites, continuously. AM provides a waste-free production management system with enhanced processes. Therefore, this detailed and compendious review describes the different stainless steels fabricated through conventional and AM techniques. It is evident that AM proves better than other several conventional techniques, by three dimensional (3D) printing of quality and complex stainless steels components that are impossible to manufacture through other methods. Notwithstanding, there still need of much efforts to improve AM technique by reducing the manufacturing cost, supporting mass production and printing large stainless steel components. With an increase in invention of various efficient state-of-the-art engineering software, robots in manufacturing, artificial intelligence and smart manufacturing, the aforementioned drawbacks of AM technique/3D printing of various stainless steel structures will be soon eradicated.Peer reviewe

    A Novel Signal Processing Method for Friction and Sliding Wear

    Get PDF
    © 2021 by ASME. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1115/1.4052063This current study proposed a new computationally efficient and comparatively accurate algorithm for calculating both static and dynamic coefficients of friction from high frequency data. Its scope embraced an application in a real-time friction-based system, such as active braking safety systems in automobile industries. The signal sources were from a heavy-duty reciprocating dry sliding wear test platform, focused on experimental data related to friction induced by stick-slip phenomena. The test specimen was a polytetrafluoroethylene (PTFE)-coated basalt/vinyl ester composite material, tested at a large scale. The algorithm was primarily aimed to provide scalability for processing significantly large tribological data in a real-time. Besides a computational efficiency, the proposed method adopted to evaluate both static and dynamic coefficients of friction using the statistical approach exhibited a greater accuracy and reliability when compared with the extant models. The result showed that the proposed method reduced the computation time of processing and reduced the variation of the absolute values of both static and dynamic frictions. However, the variation of dynamic friction was later increased at a particular threshold, based on the test duration.Peer reviewe

    Drilling characteristics and properties analysis of fiber reinforced polymer composites: A comprehensive review

    Get PDF
    Fiber-reinforced polymer (FRP) composites play a vital role in the production of structural and semi-structural components for engineering applications. The drilling process is a commonly employed machining process for FRP composites to join the FRP structural elements. Usually, the FRP composites possess a heterogeneous nature because of their multi-layered structure, hybridization, and the presence of multi-phase materials. Hence, common problems like delaminations, fuzzing, buckling, cracking, matrix and fiber burning occur during the drilling operations. These problems cause dimensional inaccuracy, poor surface finish, and tool wear and reduce the mechanical strength of the composites. The optimum drilling parameters (drill geometry, speed, feed, and depth of cut) selection for the specific materials is good to achieve effective drilling performance and better surface quality of the holes. Yet, little study has been done on how all of these factors affect the size of the drilled hole. The majority of drilling studies on FRPCs in the past have focused on how to improve the hole quality by maximizing processing conditions, and there has been little discussion on the correlation between drilling conditions, physical properties, and production techniques. This is what motivated to review the characteristics and properties analysis of FRP composites. As a consequence of this research, it is anticipated that scientists and researchers would place a greater emphasis on the drilling characteristic of the workpieces made from FRPCs than on other attributes. This review clearly presents an overview of FRP composites drilling that had progressed from 2000 to 2021. The analysis of different drilling conditions and parameters like thrust force, drill geometry, temperature, speed, and feed also includes the post-drilling analysis through delaminations, thermal damage, and surface roughness. Furthermore, the recent developments in carbon, glass, and natural fiber reinforced polymer composites are studied with both conventional and nonconventional drilling techniques. Based on the above studies, some future challenges and conclusions are drawn from this review

    Feasibility of elastomeric composites as alternative materials for marine applications: A compendious review on their properties and opportunities

    Get PDF
    © IMechE 2022. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1177/14750902221095321The term elastomer is a curtailment of two words, which are elastic and polymers. Accordingly, elastomers are polymer materials with elasticity. The significant challenges hindering the development of materials for naval applications, similar to other engineering sectors, include achieving a competitive light elastomeric structure. Marine structures are susceptible to various damage responses due to various loads throughout their service life. Being flexible, elastomer has a low modulus of elasticity, exhibits higher values of failure strain and yield strength. In these regards, elastomers are attractive materials for applications that require elasticity because they offer substantial advantages compared to traditional materials. However, the low fire resistance of these elastomeric materials jeopardizes their use in some critical applications. As a result, elastomeric blends and composites containing flame retardant (FR) additives are commonly used. On the other hand, elastomers possess (i) high strength-to-weight ratio, (ii) excellent impact properties, (iii) low infrared, magnetic, and radar signatures, (iv) excellent durability, and (v) high resilience to extreme loads. Hence, the scope of this study focuses on review and awareness regarding the feasibility of marine applications of elastomers/ elastomeric composites, their current scientific and technological drawbacks, and future outlooks or prospects to support several applications in the marine industry.Peer reviewe

    Effects of sand and gating architecture on the performance of foot valve lever casting components used in pump industries

    Get PDF
    Funding Information: The authors thank Kalasalingam Academy of Research and Education, Krishnankoil for providing the facilities for various tests and characterizations. The King Saud University authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RG-148. This Research was funded by King Mongkut's University of Technology North Bangkok has received funding support from the National Science, Research and Innovation Fund (NSRF) (Grant No. KMUTNB-MHESI-64-16.1). Publisher Copyright: © 2021 The Author(s)This work addresses manufacture, testing and simulation of foot valve lever (FVL) for monoblock pump industry, using a cost-effective casting design process. The impact of different types of sands, such as air-set, dry and sodium silicate as well as gating designs, namely H-, U- and O-type, were studied with respect to surface roughness and porosity. The mold pattern was produced using additive manufacturing (AM) technology. Both experimental and numerical investigations were performed on the temperature distribution of molten metal at random locations for the different gating configurations or designs, considering mold filling and solidification. It was evident from the experimental investigation that contribution of air-set sand and O-type gating architecture showed limited consistency effects. Importantly, gating architecture was the most influential parameter to determine all specified quality outcomes, independent of sand mold. An order of O < H < U-type was obtained from the gating designs for minimal surface roughness and percentage of porosity. Furthermore, the microstructure analysis depicted only an irregular defect with minimum quantity at both surface and cross-section of O-type at two different locations. Optimum pouring temperatures of 740, 750 and 790 °C were obtained for mold filling of all 24 components of H-, O- and U-type of gating designs, respectively. The varying solidification temperature was observed from real time thermocouple reading, which was in close agreement with the numerical simulation. Evidently, O-type of gating design exhibited best performance for large-scale development of the FVL in terms of surface roughness, porosity and cooling effects.Peer reviewe

    Experimental investigation and statistical analysis of additively manufactured onyx-carbon fiber reinforced composites

    Get PDF
    This is the peer reviewed version of the following article published in final form at https://doi.org/10.1002/app.50338. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Availability of additive manufacturing (AM) has influenced the scientific community to improve on production and versatility of the components created with several associated technologies. Adding multiple substances through superimposing levels is considered as a part of three-dimensional (3D) printing innovations to produce required products. These technologies are experiencing an increase in development nowadays. It requires frequently adding substance and has capacity to fabricate extremely complex geometrical shapes. However, the fundamental issues with this advancement include alteration of capacity to create special products with usefulness and properties at an economically viable price. In this study, significant procedural parameters: layer designs/ patterns (hexagonal, rectangular and triangular) and infill densities (30, 40 and 50%) were considered to investigate into their effects on mechanical behaviors of fused deposition modeling (FDM) or 3D-printed onyx-carbon fiber reinforced composite specimens, using a high-end 3D printing machine. Mechanical (tensile and impact) properties of the printed specimens were conclusively analyzed. From the results obtained, it was observed that better qualities were achieved with an increased infill density, and rectangular-shaped design exhibited an optimum or maximum tensile strength and energy absorption rate, when compared with other counterparts. The measurable relapse conditions were viably evolved to anticipate the real mechanical qualities with an accuracy of 96.4%. In comparison with other patterns, this was more closely predicted in the rectangular design, using regression models. The modeled linear regression helps to define the association of two dependent variables linked with properties of the dissimilar composite material natures. The models can further predict response of the quantities before and also guide practical applications.Peer reviewedFinal Accepted Versio
    corecore