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Abstract: The three-dimensional molded interconnected device (3D-MID) has received considerable
attention because of the growing demand for greater functionality and miniaturization of electronic
parts. Polymer based composite are the primary choice to be used as substrate. These materials enable
flexibility in production from macro to micro-MID products, high fracture toughness when subjected
to mechanical loading, and they are lightweight. This survey proposes a detailed review of different
types of 3D-MID modules, also presents the requirement criteria for manufacture a polymer substrate
and the main surface modification techniques used to enhance the polymer substrate. The findings
presented here allow to fundamentally understand the concept of 3D-MID, which can be used to
manufacture a novel polymer composite substrate.
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1. Introduction

Molded interconnected device (MID) represents the versatility of injection molding process that
incorporates a conductive circuit pattern with structured metallization. It has ideal mechanical and
electrical functions. This is commonly referred to as “3D-MID” and can be integrated directly into
plastics structures which include the three-dimensional circuits [1–5].

MID technology has become well-known because of its freedom of geometric design in combination
with selective structuring and metallization of 3D layout. It is able to define the angle between
components, stacking of chips and foaming of cavities in contrast to the traditional printed circuit
boards (PCBs) that are two-dimensional one [6–11]. Moreover, MIDs not only reduce the number of
components and the cost by the embedding parts such as connector within a single device but also
may save space and shorten assembly time. Therefore, MIDs are employed in numerous applications
(i.e., sensor technology, medical technology, automotive, telecommunications, and antennas) [12–15].

The MID modules can be classified into class 2 1
2 D, n × 2D and 3D categories as shown in Table 1.

The conventional circuit board is a flat module with 2D planar process surface. Class 2 1
2 D permits

to produce sample that have flat or plane-parallel process surfaces in Z direction and on the reverse
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side of processed surfaces two or more plane-parallel. On the other hand, the class n × 2D and 3D is
an interconnected device that consist of multiple process surfaces intersected at the angles or have
freeform surfaces [16–20].

Table 1. The classification of MID modules.
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So far, there are reported several methods for manufacturing the MID substrate. Some of
them reported the polymer substrate and surface modification in order to develop polymer-based
composites. Therefore, this review presents a detailed and a meaningful insight of each processing
routes. The main objective of this work is to highlight the benefits of using the MID technology
for polymer-based composites by evaluating the state of the art and to provides detail of surface
modification of polymer-based composites which leads to the manufacturing of a novel polymer
composite substrate.

2. Single-Shot Injection Molding

Single-shot injection molding is preferred for high-volume production with short cycle time.
Generally, the granulate of plastics are mixed and conveyed by a screw feeder from a hopper unit to
the injection unit, then the liquefied plastic is injected into a mold part. Single-shot injection molding
for MID technology can be sub-divided into two methods [21–27].

Laser direct structuring (LDS) was noted as an essential process for MID production over the last
decades. LDS offers high level of versatility, the possibility for prototyping product with low tool
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costs and 3D design freedom. In order to work with LDS method, usable plastics for LDS required
specific additives such as Cu2O, CuO or CuCl2, which can be added in a very high concentration to the
blend during compounding step. The characteristic of these additives is extreme heat resistance and
great potential to prevent nucleation during injection molding process [28–38]. However, it is also
possible to prepare plastics for LDS without specific additives. The LDS method consists of four-step
process, injection molding, laser structuring, metallization and surface finish. LDS is based on the
principle of ablation and nucleation by using laser irradiation. Therefore, the laser patterning creates a
microscopically rough surface and simultaneously activates the specific additives that are necessary
for the metallization step [28–38]. The schematic of LDS method is illustrated in Figure 1.
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Figure 1. Laser ablation with simultaneous additive activation.

Hot embossing is a common method used in MIDs production. It is a rapid process, clean and
economical fully additive structuring that can add benefits for limited number of process steps and
reduce cost of investment. In this process, a specially coated copper film is pressed into a thermoplastic
substrate by a heated die with the negative conductor layout. The pressure force for embossing which
is designed depends on the thickness of the copper film and substrate. There, the copper film is cut to
form a positive bond to locally melted plastic close to the surface of the blank [39–45].

3. Two-Shot Injection Molding

Two-shot injection molding consists of two separate molding cycles. It generally uses different
type of plastic that are plate-able (with plating catalyst) and non-plate able (without platting catalyst).
The major advantage of two-shot injection molding is related to geometric design freedom which enable
to create a very complex three-dimensional circuitry. Also, this is highly suitable for high-volume
production with uniform precision. In this process, the first shot of non-plate able plastic is injected
into a mold cavity to form the main component. Afterwards, the cavity in the first shot is filled by
the second shot of plate able plastic on its locally surface where circuit tracks is required prior to
metallization of the conductive structures [46–50]. The schematic of two-shot injection molding is
showed in Figure 2.



Polymers 2020, 12, 1408 4 of 33
Polymers 2020, 12, x FOR PEER REVIEW 4 of 34 

 

 
Figure 2. Processing step in two-shot injection molding. 

4. Material Properties and Characteristics for MID Substrate 

The substrate materials used to manufacture MID are made of plastic. The plastics not only offer 
more production flexibility from macro to micro-MID products but also has high fracture toughness 
when is subjected to mechanical loading. Moreover, they have good mechanical properties and light 
weight. The plastic substrates employed in the production of MID may vary depending on the 
manufacturer or supplier. Therefore, some important parameters must be considered when selecting 
the material. 

- Assembly temperature 
- Rheological properties 
- Degradation 
- Shrinkage and tolerances 
- Anisotropy properties 
- Tensile and flexural properties 
- Metallization capability 
- Electrical properties 
- Environmental concerns 
- Cost 

In order to select a substrate material from a various type of plastics with different properties 
profiles, some requirement criteria of plastic materials used for MIDs are necessary. The main criteria 
are illustrated in Table 2 [51–54]. 

Table 2. Requirement criteria for polymer materials used in MIDs. 

Thermal properties 
- Heat distortion resistance 
- Thermal expansion 
- Melting and crystallization 

Figure 2. Processing step in two-shot injection molding.

4. Material Properties and Characteristics for MID Substrate

The substrate materials used to manufacture MID are made of plastic. The plastics not only offer
more production flexibility from macro to micro-MID products but also has high fracture toughness
when is subjected to mechanical loading. Moreover, they have good mechanical properties and
light weight. The plastic substrates employed in the production of MID may vary depending on the
manufacturer or supplier. Therefore, some important parameters must be considered when selecting
the material.

- Assembly temperature
- Rheological properties
- Degradation
- Shrinkage and tolerances
- Anisotropy properties
- Tensile and flexural properties
- Metallization capability
- Electrical properties
- Environmental concerns
- Cost

In order to select a substrate material from a various type of plastics with different properties
profiles, some requirement criteria of plastic materials used for MIDs are necessary. The main criteria
are illustrated in Table 2 [51–54].

In order to search for more and higher capability plastic materials, there was extended the range
of standard plastics and engineering plastics which includes high-specification polymers. Obviously,
the requirements which apply to any base material impinge on decision-making process at several
different levels. Alongside purely technical aspect such as intrinsic load ability, compatibility, the basic
workability properties, ecological factors (i.e., suitability for return to the natural materials cycle) and
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economic factors (i.e., procurement and processing costs) influences the materials development and
selection [55–58]. Therefore, the requirement outlined in Table 2 can be very diverse. In order to satisfy
these requirements, the characteristics values have to line up with certain basics requirements:

- Materials have to be meaningful
- Materials have to be comparable
- Materials should be rationally measurable

The selection of the right MID substrate is often a very challenge process that should be a balance
between electrical, thermal and mechanical properties and the manufacturing cost [59–62].

Table 2. Requirement criteria for polymer materials used in MIDs.

Thermal properties
- Heat distortion resistance
- Thermal expansion
- Melting and crystallization

Mechanical properties
- Strength and yield strength
- Fracture elongation
- Stiffness (E modulus)

Electrical properties - Dielectricity
- Electrical puncture resistance

Workability properties
- Flowability
- Shrinkage
- Distortion

Compatibility - Plastic/plastic
- Plastic/metal

Environmental compatibility - Recycling
- Scarcity

5. Thermoplastics for MID

There are many different polymers used to manufacture the MID substrate. The choice of material
and production process are primarily linked to mechanical, thermal and electrical requirement of
the purpose of MID application. Thermoplastics materials are the most used to fabricate the MID
substrate [63–65]. They can be subdivided on the basis of heat distortion resistance, long-term
service temperature and the price of raw material. The plastics pyramid depicted in Figure 3
describe the three major subgroups of thermoplastic materials [66,67]. In the plastics pyramid,
the presence of high-performance plastics is very scarce, but extremely interesting in terms of
engineering applications. However, high-performance plastics are associated to high prices and costly
processing which may entail limitations for industrial use. On the other hand, many MIDs are made
of engineering-grade thermoplastics, because they are available at low cost and present virtually
no difficulties for manufacturing in the existing production facilities. Typically, the characterization
of an MID substrate materials depends primarily on the material properties which are responsible
for indicating how the material behaves during metallization along with the chemical resistance.
The pyramid overview is considered a guideline to select materials for MID [68,69].

5.1. Polypropylene (PP)

Polypropylene (PP) is a standard plastic that can be used in MID. It is largely nonpolar and has a
crystallinity approximately 60–70%. The glass transition (Tg) is about 0 ◦C and melting temperature
is in the range of 155 to 160 ◦C thus, PP is not suitable for standard soldering process. PP has a
high chemical resistance on account of its nonpolar character, and it has no inherent flame-retardant
properties. Moreover, reinforced PP by glass fiber or talc can reduce the isotropic shrinkage and heat
distortion resistance [70–79].
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5.2. Syndiotactic Polystyrene (sPS)

Syndiotactic polystyrene (sPS) is partially crystalline plastic that can withstand to temperatures
up to 265 ◦C for short periods. Long-term service temperature can reach up to 150 ◦C. The maximum
crystallinity is approximately 52% and it depend on processing conditions. It has a melting point of
275 ◦C and the glass transition of 105 ◦C. sPS is a polymer with extremely high chemical resistance
but can be easily damaged by oxidization with ozone and chorine particularly at high temperature.
Moreover, sPS can be metallized by a wet-chemical or catalytic process [80–89].

5.3. Polyphenyl Ether (PPE)

Polyphenyl Ether (PPE) or also known as polyphenyl oxide (PPO) is an engineering plastic which
is produced by blend of PPE and PS. It belongs to the group of amorphous plastics which has a good
mechanical property. Its electrical properties are virtually unaffected by the temperature and frequency.
The long-term service temperature is in the range of 100–110 ◦C. It can be chemically metallized. PPE is
not only resistant to hydrocarbons but also susceptible to stress cracking on account of its styrene
content [90–99].

5.4. Polycarbonate (PC)

Polycarbonate (PC) is an amorphous, transparent plastics that combines high strength,
heat distortion resistance, and impact roughness even at low temperature. It also has good electrical
insulating properties that are virtually independent of temperature and moisture. The glass transition
temperature is between 140 and 150 ◦C [100–109].

5.5. Polybutylene Terephthalate (PBT)

Polybutylene terephthalate (PBT) is a partially crystalline engineering plastic. It is used
primarily on account of its good dimensional stability, temperature resistance and electrical properties.
PBT exhibits high resistance to many solvents, but it is not inherently flame retardant [110–119].

5.6. Acrylonitrile Butadiene Styrene (ABS)

Acrylonitrile butadiene styrene (ABS) belongs to the group of amorphous plastics. It exhibits
good impact resistance, hardness and scratch resistance. The maximum use temperature of ABS is up
to 90 ◦C which makes them unsuitable for standard soldering process. The glass transition temperature
is about 85–100 ◦C. The proportion of its three constituent components can be varied which permits to
adapt this material to very widely differing requirement [120–129].

5.7. Polyamides (PA)

Polyamides (PA) are found in an exceptionally wide range. The polyamides constituent is one of
the most important groups of materials within the partially crystalline engineering plastics. Some of
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polyamides show properties on those of the high temperature plastics in particular PPA, PA6T/X,
PA46 and PA6/6T. High mechanical loading, high damping capability, and high wear resistance
are the characteristics of PA, regardless of structure. The water absorption is approximately 10%.
Generally, PAs are resistant to solvents, fuels, and lubricants. However, they are not inherently flame
retardant [130–139].

5.8. Polyphenylene Sulfide (PPS)

Polyphenylene sulfide (PPS) belongs to the group of partially crystalline and nonpolar high
temperature plastics. Its structure lacks branches thus, it is highly crystalline. It is a very hard and stiff
material which is suitable for process at high temperature up to 240 ◦C. The melting point is about
285 ◦C, and glass transition temperature is between 85 and 100 ◦C. PPS exhibits excellent chemical
resistance, very low water absorption, and inherent flame resistance [140–146].

5.9. Liquid Crystal Polymer (LCPs)

Liquid crystal polymers (LCPs) consist of rigid, rod-shaped macromolecules that self-parallel in
melt and form liquid crystalline structure. It can be used to manufacture extremely delicate molding
with thin wall sections and long runner channels. Other characteristic properties besides high strength
and rigidity in the flow direction includs the long-term service temperature of 185 to 250 ◦C and
the melting temperature between 280 and 355 ◦C. LCPs are solderable with common methods and
galvano-workable types also are available [147–153].

5.10. Polyetherimide (PEI)

Polyetherimide (PEI) is an amorphous high temperature plastic. It exhibits high strength rigidity
and hardness even without reinforcement. The maximum long-term service temperature is about
170 ◦C and its glass transition temperature is 210 ◦C. PEI can easily solderable by reflow soldering
process. It can be chemically metallized, and it is not resistant to ketones, chloroform, ethyl acetate,
and methyl ethyl ketone. Moreover, it is inherently flame retardant [154–160].

5.11. Polyethersulfone (PES)

Polyethersulfone (PES) belongs to the group of amorphous, transparent and polar high temperature
plastics. It is available in both reinforced and non-reinforced type. It exhibits high strength, rigidity and
hardness across a wide temperature range from −100 to +200 ◦C. Their Tg is about 225 ◦C. PES can be
chemically metalized by surface treatment printing and metallization under vacuum or galvanization
after appropriate pretreatment process. Moreover, PES is not only chemically resistant to ketones,
esters, hydrocarbons, and aromatics, but also can include highly polar solvents [161–167].

6. Modified Thermoplastics for MID

The high temperatures requirement is a changeover related to lead-free solder process imposed by
the constituted law. This is the major reason why high-performance thermoplastics are virtually the only
unmodified products that can be used adequately as substrate materials [168–170]. Engineering plastics
such as PA6 and PA66 are often used as base materials on the account of their good metallization and
service behaviour. Therefore, searching for approaches that are economically and relatively practically
for engineering thermoplastics is still a major challenge. It is especially for assembly and connection
technology process such as lead-free reflow soldering. Nowadays, these thermoplastics are enriched
with up to 40% by weight of reinforcing with additive which allows to increase their mechanical limits.
Glass fiber, glass balls, and a wide of variety of mineral substances are used as reinforcing additive.
As far as extending their thermal limits is a concern, the MID research conducted in the recent years
has brought to light two main approaches, namely electron-beam crosslinking and the use of the filler
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system for modifying thermoplastics, which is capable of satisfying higher requirements, particularly
those deriving from the production process [171–174].

7. Radiation of Cross-Linked Thermoplastics

The radiation cross-linked thermoplastics is a technique which was investigated since 1950. In the
past, its use was mainly restricted to the group of polyolefins. Recently, the endeavor to transfer
experience gained in the radiation crosslinking to injection molding and extrusion films made of
engineering plastics are a new departure into relatively unknown territory [175,176]. One of the success
has been achieved by cross-linked PA6 and PBT molding. Despite their excellent mechanical and
electrical properties, engineering plastics have not been adopted for high thermal load process such as
reflow soldering primarily on account of their low heat distortion resistance and poor temperature
resistance. This thermal weakness can be overcome by radiation crosslinking [177–179]. In the process
of crosslinking, plastics are not only cross-linked chemically but also by radiation chemistry for example
in the presence of peroxides. In principle the effect of radiation-chemical reactions can be induced by
electromagnetics wave such as X-ray or gamma rays [5,180].

Radiation induced crosslinking has numerous advantages. This is because the main thermoplastics
material’s properties can be improved after modified by radiation induced crosslinking as showed in
Table 3 [181,182].

Table 3. Improvement in thermoplastics properties by radiation induced crosslinking.

Mechanical Properties Thermal Properties Chemical/Physical Properties

- Strength
- Moduli
- Abrasion resistance
- Creep behavior

- Temperature resistance
- Reduction in thermal expansion
- Solderability
- Flame retardation

- Chemical resistance
- Reduction in solubility
- Increase adhesion
- Hydrolysis resistance

8. Thermoplastics Composites

Compounding the thermoplastics with special fillers or additives as composites materials has
proven to be an effective way of integrating functions such as mechanical, thermal and electrical
properties. These plastic compounds benefit from material synergies derived from the good workability
of the plastics and the additional properties which are gains from the fillers. Tailoring the properties of
plastic compounds such as thermally conductive in order to meet superior requirements would entail
conforming with the following criteria for selection the composition of the fillers [183–186]:

- Maximization of filling
- Filler shape and size
- Filler mixtures
- Additivity

Generally, fillers such as ceramic materials are thermally conductive but electrically insulating.
On the other hand, the metallic materials are thermally and electrically conductive. The high proportion
of fillers can alter the behaviour radically compared to unmodified thermoplastics. On the other hand,
the fracture and strain generally diminish, whereas rigidity decreases. There, the strength depends
largely on the bonding of filler with the embedded matrix. Moreover, some special additives and other
fillers such as glass fiber can be applied to improve the bonding between matrix and filler which result
in strength and fracture strain enhancement.

Typically, the plastic compounds for MID can be manufactured from a very wide variety of
fillers from the group of metallic or ceramic materials. Recently, some of fillers are coming into
widespread use on account of their versatility, excellent thermal properties and because they offer
considerable benefits for MID production. The preferred fillers are graphite, carbon black, copper,
aluminium oxide and boron nitride. The geometry of filler is one of the main factors that influences
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the mechanics of reinforcement. Nowadays, they can be classified into three groups, one-dimensional
filler (i.e., fibers), two-dimensional fillers (i.e., platelets) and three-dimensional fillers (i.e., powder).
For one-dimensional fillers, glass fibers are widely used, because of their geometry and superior
improvement in the mechanical characteristic values. The proportion of glass fiber reinforcement is
generally between 15% and 50% by weight. Below 15% by weight, there is no reinforcing effect while
above 50% by weight it becomes difficult to wet the fillers with the uniformity necessary for smooth
surfaces. For three-dimensional filler such as glass balls usually increase only the elastic modulus.
The classification of fillers by geometry is also crucial in term of thermal conductivity. Anisometric
one- or two-dimensional fillers lead to higher thermal conductivities than three-dimensional fillers
and spherical fillers. Therefore, the thermal conductivity is the process dependent and component
dependent material property, particularly when the fillers used are anisometric. Moreover, highly filler
filled, thermal conductive plastics require an adaptation of the process parameters for dependable
injection molding. This is because of the higher melt viscosity and rapid cooling of the plastics melt while
the mold cavity is filling. Consequently, MID design for highly filled thermally conductive compounds
is always trade-off between the modified properties and workability of the materials [187–191].

9. LDS Materials for MID

The LDS is one of method used to produce MID product by using laser activation of special additive
filled plastics. Therefore, the special additives that enable the LDS process must be finely distributed
in body part and transferred into catalytically agent during laser activation. The requirement of these
additives are good chemical compatibility and homogeneous distribution in matrix, no impairing
of electrical and mechanical of substrate, excellent thermal stability and no catalytic activities in
deactivated state. In this process, the preferred additives are from the group of metal oxide or
mixed metal oxide especially, copper compound such as Cu2O, CuO or CuCl2. This is because its
temperature resistance is extremely high thus, there no nucleation can take place while the plastic
melt. LDS materials have found in the range from standard thermoplastics through engineering
thermoplastics and high-performance thermoplastics which are suitable for reflow soldering process.
The currently available LDS materials for industrial scale are listed in Table 4 [192–197].

Table 4. The list of LDS materials.

Polymer Matrix Supplier Company Commercial Grade Name

ABS
RTP 699 X 113386 B

Trinseo MAGNUM LDS/ABS 3453

PC

RTP 399 X 113385 B

MEP XANTAR LDS 3750

Blustar Chengrand SUNPLAS LDS C0040

Trinseo EMERGE LDS/PC 8900

Kingfa Vismid SOL 2100 LDS

PA/PPA

BASF Ultramid T4381 LDS

DSM ForTii LDS 85

EMS Grilamid 1SBVX-50H LDS

Evonik Vestamid HT plus LDS 1031

Kingfa Vismid SOL 65250 LDS

PA/PPA
RTP RTP 299 X 113399 H

MEP Reny XHP 1351L

PBT
RTP 1099 X 127271 C

Evonik Vestodur X9423
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Table 4. Cont.

Polymer Matrix Supplier Company Commercial Grade Name

PPE Premix Preperm 260 LDS

LCP
RTP RTP 3499-3 X 113393 A

Ticona Vectra E840i LDS

PEI RTP 2199 X 127272 A

PPS DIC LP-150-LDS

10. Thermoset Plastic for MID

Thermoset plastic is of interest for MID substrate because it offers some high heat distortion
temperature. The thermoset compound can be mixed with a wide variety of fillers, which allows to
modify their properties to meet the requirements for a given applications [198–202]. The addition
of suitable proportion of fillers can produce the coefficients of thermal expansion, heat distortion
and elongation behaviour virtually identical to those of copper. Once thermoset is cured, their
three-dimensional molecular network structure exhibits a very high level of dimensional stability.
The important thermal properties of the current commercially available thermoset compound are listed
in Table 5 [203–206].

Table 5. List of current commercial thermoset compound and thermal properties.

Polymer Name Elongation (10−6/K)
(ISO 11359)

Heat Distortion Temperature (◦C)
HDT-A (1.8 N/mm2)
(ISO 75-2)

Phenolic resin 16–24 >250

Epoxy resin 15–25 >250

UP resin 10–20 >250

DAP resin 10–20 >250

11. Laser-Assisted Metallization for Polymer Materials

Regarding the MID parts, the surface properties of polymer substrate is one of the crucial factors
that significantly affect metallization process, adhesion strength, and overall quality of the deposited
metallic layer. Generally, the surface modification of polymer substrate can be divided into two
methods, chemical and physical modification. In chemical modification, the polymer substrate is
modified on selective surface by using chemical solution as solvent such as potassium manganite
(KMnO4), nitric acid (HNO3), and ethyl alcohol [207–209]. On the other hand, laser modification is
one of the popular physical surface treatment methods used in order to prepare the polymer surface
for metallization. In the last decades, laser-assisted electroless metallization for polymer materials
has been reported in numerous works [210,211]. Laser treatment represent a group of advanced
engineering tool useful in selective modification of small surface areas of complex shapes. They have
great importance in manufacturing of printed circuit boards and other small electronic devices. Laser
treatment is able to change the surface geometrical structure, degradation or crosslinking of molecular
chains of polymer without changing bulk properties. Laser wavelength, laser power and laser mode of
operation (continuous or pulsed laser) are the factors that influences the surface properties of polymer
materials. Typically, the polymers are not only absorbing well ultraviolet (UV) but also infrared (IR),
whereas they are mostly transparent to visible light (Vis). Basically, UV radiation causes photolytic
breaking of molecular bond within polymer materials while, the heat effects are limited. It results in
the formation of free radicals that enable to initiate photochemical reactions. In the IR region, most of
polymer functional groups are excited to higher vibrational and rotational energetic states that is
accompanied by heat generation. The accumulation of heat is able to break the molecular bonds and
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thus the thermally activated reactions occur. Moreover, the polymers which are modified in the range
of Vis spectrum, are commonly doped with absorbing agent (photoinitiators) which decompose and
initiate various reactions. The interaction between laser irradiation and polymer are greatly depending
on applied wavelength of the radiation. In the laser surface modification method, a very important
parameter is energy of radiation per unit area, called laser fluence for a given polymer. The ablation
of material starts when a certain value of laser fluence, the so-called ablation threshold is reached or
exceeded. Therefore, the laser surface modification of materials is classified as below or above the
ablation threshold [212–216].

12. Influence of Laser Irradiation on Polymer

In the laser modification of surface layer, there are two important material parameters that
influence the surface properties of the polymer material. Firstly, absorption coefficient (α), associated
with absorption of light wave energy which can be evaluated by measuring of the energy attenuation
within that materials. Secondly, the refractive index (n), that is connected with the coefficient of
reflection (R) of the radiation at the material-medium phase boundary [217,218]. The light wave
dissipation is associated with the light absorption that can be drawn as an absorption coefficient in the
following Equation (1) [219].

α =
4πκ
λ

(1)

where κ is extinction coefficient and λ is the light wavelength.
As per Equation (1), it is clear that the light absorption coefficient of material depends on both the

light wavelength and extinction coefficient. The laser radiation intensity within an examined material
can be described by the empirical Beer’s law Equation (2) [220,221].

I(Z) = (1−R)I0e−az (2)

where I (z) is the laser radiation intensity within materials at a vary depth (z), measured from the
material surface, R is coefficient of light reflection from material surface, and I0 is intensity of incident
laser radiation.

The coefficient of light reflection (R) is also an important factor for modification of the material
surface layer. It can be described by Maxwell’s equation system in the case of the perpendicular
incidence of light on the material surface which yields the value R [222,223].

R =
(n− 1)2 + κ2

(n + 1)2 + κ2
(3)

According to Equation (3), R value depends on both the refractive index (n) and the extinction
coefficient (κ). Thus, the laser radiation intensity within material at a depth (z) can be rewritten by
taking Equation (3) into Equation (2) which leads to following relationship [224,225] as shown in
Equation (4):

I(Z) =

 4n + 2κ2(
(n + 1)2 + κ2

} I0e−az (4)

13. The Absorption Coefficient for Laser Radiation

The polymer materials may have high absorption coefficient for laser radiation especially, in the
UV range. Penetration depth (1/α) of laser light at 147 nm for example, polyethylene (PE) is about
34 nm, whereas its gamma radiation is about 15 cm [226]. This implies that the energy is absorbed in a
thin surface layer of polymeric material irradiated even by using ultraviolet radiation. In addition,
the surface layer properties of polymeric materials also related to the laser ablation. Basically, the laser
ablation is based on physicochemical changes induced by the laser radiation and resulted in tearing
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off fragments of the irradiated surface layer in the ablation process [227–231]. In the laser ablation of
polymeric materials, there are two main process, photochemical and photothermal that may proceed
simultaneously. The photochemical ablation consists in photolytic breaking of chemical bond. It was
done by electron excitation in macromolecule segments to high-energy electron states. The essential
phase of the ablation process begins when a large number of chemical bonds simultaneously undergo
breaking upon irradiation by high-energy laser pulses [232]. The ablation threshold (Eth), and the
number of broken chemical bonds (n) can be drawn as in Equation (5) [233,234].

Eth = n
[

hν
φα(1−R)

]
(5)

where, R is coefficient of laser radiation reflection of the polymeric surface, φ is the quantum yield of
bond breaking (0 to 1), α is coefficient of radiation absorption, and hν is photon energy. On the other
hand, in the photothermal ablation process is also assumed that the laser radiation strongly is absorbed
by the material excites molecules to high-energy state. Due to mutual collisions, the molecules relax
from this state to ground state thus, heat generated in this way causes an increase in temperature
being sufficient for breaking of chemical bonds in polymeric materials [235]. When the material
temperature exceeds a certain value, called threshold ablation temperature (TD), the process of thermal
ablation of polymeric materials begins. The relationship between Eth and TD can be expressed as in
Equation (6) [236,237].

Eth = Cw
[

TD − TR

α(1−R)

]
(6)

where TR and Cw are the initial temperature and specific heat of polymeric materials, respectively.

14. Photochemical and Photothermal Ablation

Photochemical and photothermal ablation proceed works simultaneously and are difficult to
separate. The thickness of material fragment torn off the surface layer i.e., ablation depth, depend on
both photochemical and photothermal ablation mechanisms. Hence, the ablation depth (L) of materials
can be expressed as a sum of the two components as presented in Equations (7) and (8) [238–240].

L =
1
αe f f

ln
( E j

Eth

)
+ Aexp

(
−Ea

κBT

)
(7)

L = Lchem + Ltherm (8)

where Ej is the energy per laser pulse, Ea is activation energy for ablation, and αeff is effective coefficient
of absorption. The first component in Equation (7) represents the photochemical ablation model which
is derived from the Beer’s law, whereas the second component represents the photothermal ablation
model based on the Arrhenius’s law associated to Equation (8) [241–244]. The ablation rate of the
surface layer of polymeric materials is illustrated in Figure 4 [245,246]. The ablation rate is defined
as a quotient of the total ablation depth (L) and the number of laser pulses (N) as a function of Ej
when is neglected the thermal component. The rapid tearing off fragments of polymeric materials
starts when the laser pulse energy exceeds the ablation threshold. During that time, some changes in
surface geometric structure appear while no significant chemical change occur. Moreover, the ablation
rate depends also on the nature of material to be modified, Ej value, laser radiation wavelength, laser
pulse duration (pulse width) and ambient condition. Because so many variable factors, including
the two-step absorption and attenuation of radiation beam by the material being torn off, there are a
number of models for the mechanism of the ablation process [247–251].
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15. Selection Criteria of Laser for Polymers

There are many factors that affect surface layer properties such as absorption coefficient, laser
beam angle of incidence, and energy distribution of laser beam. Therefore, a suitable criterion for
the selection of laser for polymer is required. For instance, the coefficients of absorption of the laser
UV radiation for poly(ethylene terephthalate) (PET) and polystyrene (PS) are significantly higher
than those for polyethylene (PE) and polypropylene (PP). PET and PS absorb the laser UV radiation
mostly in the surface layer of thickness not exceeding 0.1 and 0.4 micrometer, respectively. This is
in contrast to PP and PE which the absorption occurs within much thicker layer. Some of additives
such as polyolefin and benzophenone are being used for the improvement of UV and UV-Vis light
absorption [252–255]. The specific heat and thermal diffusion constant of the polymeric material can
be a concern because they are related to minimization of thermal damages into material. In the recent
years, the number of lasers operating with different ranges of wavelength and various mode (pulsed or
continuous) are rapidly growing. They can be classified according to various criteria. One of the most
important criteria is the type of active medium or gain medium. Basically, there are three types of
active medium which are used in present [256,257]:

- Gas laser (excimer laser, nitrogen or carbon dioxide laser)
- Solid-state lasers (neodymium, Nd:YAG laser)
- Dye laser

Table 6 presents a summary with the list of available lasers and their capacity [258,259].

Table 6. The list of available lasers in industry.

Wavelength (nm) Active Medium Operation Mode Average Power (W)

193 ArF excimer pulsed mode 1–100

248 KrF excimer pulsed mode 1–100

308 XeCl excimer pulsed mode 1–100

351 XeF excimer pulsed mode 1–100

337 N2 pulsed mode 0.1

351–1092 Ar+ pulsed/continuous 0.001–0.1

262/355/532/1064 Nd:YAG pulsed/continuous 100

697 Al2O3 (ruby laser) pulsed/continuous 1

9000–11,000 CO2 pulsed/continuous 10,000

808/940/980 GaAs continuous mode 1000
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16. Metallization

In order to create complete MID parts integrated within the circuit track, plastic parts must be
coated with metal ion by a process called metallization. The metallization or perhaps called plating
is a process to plate or deposit a metal ion (i.e., Cu2+, Ni2+) into the conductive or non-conductive
substrate. The goal of this process is to enhance the specific properties of plastics including reflectivity,
abrasion resistance, and electrical conductivity. Therefore, plating on plastics has received considerable
attention in the manufacturing of printed circuit boards (PCBs), automotive parts and electromagnetic
interference (EMI) shielding applications [260–263]. Over the last decades, the plastics was successfully
metallized with gold, silver, nickel and copper [264,265]. Generally, metallization of plastics is classified
into two groups that are primary and secondary metallization. In primary metallization, plastics can
be done by depositing a thin layer of metal having thickness approximately 10–50 µm. On the other
hand, the secondary metallization is conducted after primary metalized parts to increase the thickness
of metallic layer up to 180 µm or above. There are many methods for the metallization of plastics as
following [266,267]

- Dipping in a metal paint
- Sputtering
- Vapour deposition technique
- Electro plating
- Electroless plating

17. Electro and Electroless Plating

The electro and electroless plating are the most important methods for producing functional and
decorative finishes in the requirement for MID applications. Both electro and electroless represent a
chemical reduction between the reducing agent, in the presence of solution, and the metal ion. During
the plating process, a thin layer of catalyst is applied to localized surface. For instance, a layer of metal
(i.e., copper or nickel) is plated as a result of the metallic phase that appears on the solid surface. For the
electro plating or perhaps called galvanic plating, it is necessary to use battery or rectifier. The applied
electric current is combined with a chemical solution to reduce the metal cations. Basically, there are
two main components, the parts that is plated called cathode and the metal which is plated on the parts
is called anode. On the other hand, electroless plating, also known as autocatalytic plating, is a process
which uses purely chemical reduction process without any electrical energy dispersal [268–273]. It is
possible to obtain metalize on dielectric surface at ambient temperatures by using some simple aqueous
solutions. Therefore, electroless plating is widely used in modifying the surface of plastics. Especially
it was noted a significant growth on the printed circuit market. The schematic of electro and electroless
plating are illustrated in graphical abstract, and the various advantageous and disadvantageous
between electro and electroless plating are presented in Table 7 [274–276].

Table 7. Electro and electroless various advantageous and disadvantageous.

Electro Plating Electroless Plating

Plating thickness: 40–50 µm Plating thickness 8–10 µm

Controlled electro plating reaction Complicated chemical process

Electrical conduction No conduction problem

High quality surface finish Rough surface finish

18. Electroless Plating Procedure

Electroless plating on plastic is a technologically and chemically complex process. Generally,
electroless plating consists of the following steps [277–281].



Polymers 2020, 12, 1408 15 of 33

(i) Cleaning step:

This step is not only used for cleaning the surface of plastics to remove oil, dirt but also used to
produce roughness which leads on improving surface area. The cleaner typically belongs to alkaline
group which include neutral or acidic materials. The most important factors for a superior cleaning
solution are: temperature of cleaner, concentration of cleaner and cleanliness of cleaner after cleaning.

(ii) Etching steps:

Etching is the key stage in plating process for achieving a good metal-plastic bonding.
The employed surface is not only chemically etched but also physically etched resulting in the
development of pores that can increase the surface area thereby providing the opportunity for superior
contact between metallic layer of plating. During the chemical etching, the plastic parts are immersed
in an oxidant solution which is either chromic acid in aqueous sulphuric acid or hydrofluoric acid
containing sulphuric acid. It is applied on the selective surfaces to be plated. The etching time is
normally for 5–15 min with temperature in the range of 60–65 ◦C. In addition, a laser can be applied for
physically etching the plastic parts. The quality of the etching surface depends on laser mode (pulse or
continuous), laser wavelength, and energy of laser beam.

(iii) Neutralization steps:

Neutralization is necessary for removing the residual of oxidant that remains during the etching
steps. The reducing agent such as ferrous ions aids to prevent the inhibition of the catalyst. This is
because even trace may completely inhibit electroless deposition of metallic layer on the plastic surface.

(iv) Activation steps:

In this process, the modified surface is contacted with an activator or catalysts usually in colloidal
suspension as catalyst powder. The catalyst deposited in the surface micro-cavities is formed during
conditioning for subsequently the electroless plating. The activation process is typically carried out at
40–45 ◦C for 3–5 min. Higher concentration of activator or too long immersion time lead to improper
activation which probably cause poor metallic bonding. There are many commercial catalysts that can
be used in the activation process as showed in Table 8 [282–285]. Generally, the electroless plating is
regarded as a dehydrogenation reaction since the hydrogen may develops simultaneously with metal
reduction. According to Table 8, palladium (Pd) is the most active from the catalyst list. It is because
its exchange current density for hydrogen gas evolution reaction (−log i0) is the lowest. However,
palladium is unable to form itself on the plastics surface. Therefore, the combination of stannous (Sn)
with palladium is preferred because stannous is an excellent reducing agent for palladium when is
used for coating of non-conductive surface. Stannous used in form of stannous chloride serves to
wet the surface. The uniform layer of reducing agent afterward is subjected to intermediate water
rinse which then is converted into insoluble, hydrous stannous oxychloride coating. When palladium
chloride solution is dipping in, the palladium chloride may be reduced to metallic palladium (Pd0)
and bound to the desired surface. Moreover, the concentration of palladium and stannous is normally
5 × 10−6 g/cm2 and 20 × 10−6 g/cm2 respectively, which usually is used for plating of plastics [286–289].

(v) Acceleration steps:

The acceleration is a process which permits to activate the catalyst and during the activation step
the activity is more intense. The accelerator can be acidic or alkaline solution. The activated surface
is typically washed and immersed in an acceleration bath at 30–35 ◦C for 3–5 min. There palladium
and stannous mat be used as catalysts too. The excess of stannous on the activated surface allows
stabilizing stannous ions by the accelerator solution consequently, the Pd2+ as a catalyst is reacted
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and formed into Pd0. The chemical reduction of palladium (II) in the presence of stannous (II) after
acceleration can be drawn by [290–295]:

Pd2+ + Sn2+ HCl
→ Pd0 + Sn4+ (9)

Table 8. Comparison of catalytic activity of metals.

Metal −log i0 (A/cm2)
(Exchange Current Density for Hydrogen Evolution Reaction)

Palladium 3.0

Platinum 3.1

Rhodium 3.6

Iridium 3.7

Nickel 5.2

Gold 5.4

Silver 5.9

Copper 6.3

(vi) Deposition or plating steps:

Deposition or plating is the final process for electroless metallization. In this stage, the activated
surface which is prepared throughout the solution usually contains metal-salts as a reducing agent.
The plating layer forms by oxidation-reduction reaction on the activated surface. Electroless plating
bath typically contains metal-salts, reducing agent (i.e., formaldehyde), alkaline hydroxide (i.e sodium
hydroxide), chelating agents (i.e., EDTA, Rochelle salts), stabilizer and brightener. This process is
conducted at bath temperature in the range 45–65 ◦C [296–299]. A versatile explanation of mechanism
of electroless plating process based on electrochemical reactions is presented [300–302]. The reducing
agents are anodically oxidized on the catalyst surface while the electrons obtained are transferred to
metal ions by a cathodically reduction. An excellent example is electroless plating of copper. The copper
ions are reduced by formaldehyde process at room temperature (30–35 ◦C) in alkaline solutions (pH �
12–14). At this stage copper ions are bounded into a complex. The most suitable Cu2+ ligands for
electroless copper plating solutions contain polyhydroxy compounds from tertiary amine groups and
hydroxy groups in most common practice used K-Na tartrate, Na2EDTA, NaOH and formaldehyde.
The chemical reduction for copper plating is described by [303–305]:

2CH2O + 40H−→ Cu0 + 2HCOO− + H2 + 2H2O (10)

The measurement of polarization resistance (Rp) is a method that can provide information
about the mechanism of plating process. The polarization resistance is inversely proportional to the
process rate (i). Here, the relationship between Rp and i is written as described in Equations (11) and
(12) [306–308], respectively.

i =
babc

Rp(ba + bc)
(11)

RP =

(
dE
di

)
i=0

(12)

where ba and bc are Tafel coefficients (b � 1/αnf ), α is the transfer coefficient, n is the number of electrons
involved in the reaction for one molecule of reactant and f is equal to F/RT (F = Faraday number).

Another factor which should be considered during plating process is deposition rate. Deposition
rate is expressed in unit of micrometer per hour. When the concentration of reducing substance is not
maintained at a constant level, the deposition rate will start to decrease. The deposition rate is often
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given as average rates that depend on the ratio of the surface to be plated and the volume of solutions
(dm2/L). The dependence of deposition rate (v) for the specific concentration of reducing substance is
described by an empirical equation as follow [309–314]:

v = k
[
Men+

]a
[Red]b

[
H+

]c
[L]d (13)

where k is the rate constant, L is the concentration of free ligand; Men+ and Red, are metal ions and
reducing agent respectively. The exponents a and b are usually smaller than unity, c is a negative value
and d is usually close to zero when the ligand is substituted. However, this relationship is for a general
case. There, the electroless deposition rate is normally about 2–5 µm/h.

19. Future Recommendation

The strategies for the development of polymer-based composites undoubtedly strive to address
the surface modification and selection of catalytic activity within nowadays challenging metals in
order to achieve the requirement of MID technology. The surface modification is paramount important
to address this challenge. However, only a catalytic activity can offer a simultaneous effect to all
modification techniques. Accordingly, a possible solution forward to accelerating the research and
development of polymer-based composites for MID, is to bridge the research gap between surface
modification techniques of polymer-based composites and catalytic activity of metals agent. However,
the efficiency of chemical modification surface is limited due to its chemical reaction.

On the other hand, laser-assisted modifications have successfully embarked to modify polymer
surface. Similarly, a number of fabrications of electroless plating solution with palladium have been
reported. Hence, the way forward, is to produce a combination of laser-assisted modification and
electroless plating solution which incorporated palladium. This can extend the scope of polymer-based
composites and MID technology to shorten the gap between lab scale research and industrial
applications in future.

20. Conclusions

The higher requirements of three-dimensional electronic parts associated to better functioning
and continuum miniaturization have encouraged the scientific community to focus their research
and develop novel method such as 3D-MID technology. The 3D-MID represents the versatility of
injection molding process that incorporates a conductive circuit pattern with structured metallization.
It can reach ideal mechanical and electrical functions and can be effectively integrated directly into the
plastics substrate which include the three-dimensional circuits for automotive parts, mobile phones,
and medical devices. This review was devoted to providing a robust understanding of 3D-MID
modules, to present the requirement criteria for manufacture polymer substrate, and the main surface
modification techniques used to enhance the polymer substrate. The findings presented here allows
to fundamentally understand the concept of 3D-MID which can be used to create novel polymer
composite substrate. The importance of selection polymer substrate including surface modification,
which play a crucial role was emphasized. By applying an appropriate laser treatment on a polymer
substrate, it will be possible to obtain better surface characteristics which enable to improve the
metallization process. The laser treatment applied to a polymer substrate could be considered a
very versatile technique because its effectiveness in surface modification permits the use of polymer
composites within multiple critical applications.
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Nomenclature

Tg Glass transition temperature [◦C]
α Laser absorption coefficient
αeff Effective coefficient of laser absorption
n Reflective index
R Coefficient of reflection
Rp Polarization resistance [Ω/cm2]
κ Extinction coefficient
λ Light wavelength [nm]
I Laser radiation intensity [W/sr]
I0 Intensity of incident laser radiation [W/sr]
i Plating process rate [s]
Eth Ablation threshold [J/cm2]
Ej Energy per laser pulse [J/cm2]
Ea Activation energy for ablation [J/cm2]
φ Quantum yield of bond breaking (0 to 1)
hν Photon energy [eV]
TD Threshold ablation temperature [◦K]
TR Initial temperature [◦K]
Cw Specific heat of polymeric materials [J/kg·K]
L Ablation depth [mm]
Lchem Photochemical ablation depth [mm]
Ltherm Photothermal ablation depth [mm]
ba, bc Tafel equation coefficients
v Dependence of deposition rate [dm2/L]
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