63 research outputs found
Neural Dynamics during Anoxia and the “Wave of Death”
Recent experiments in rats have shown the occurrence of a high amplitude slow brain wave in the EEG approximately 1 minute after decapitation, with a duration of 5–15 s (van Rijn et al, PLoS One 6, e16514, 2011) that was presumed to signify the death of brain neurons. We present a computational model of a single neuron and its intra- and extracellular ion concentrations, which shows the physiological mechanism for this observation. The wave is caused by membrane potential oscillations, that occur after the cessation of activity of the sodium-potassium pumps has lead to an excess of extracellular potassium. These oscillations can be described by the Hodgkin-Huxley equations for the sodium and potassium channels, and result in a sudden change in mean membrane voltage. In combination with a high-pass filter, this sudden depolarization leads to a wave in the EEG. We discuss that this process is not necessarily irreversible
The temperature dependence and involvement of mitochondria permeability transition and caspase activation in damage to organotypic hippocampal slices following in vitro ischemia
The aggravating effect of hyperglycemia on ischemic brain injury can be mimicked in a model of in vitro ischemia (IVI) using murine hippocampal slice cultures. Using this model, we found that the damage in the CA1 region following IVI in the absence or presence of 40 mm glucose (hyperglycemia) is highly temperature dependent. Decreasing the temperature from 35 to 31°C during IVI prevented cell death, whereas increasing the temperature by 2°C markedly aggravated damage. As blockade of the mitochondrial permeability transition (MPT) is equally effective as hypothermia in preventing ischemic cell death in vivo, we investigated whether inhibition of MPT or of caspases was protective following IVI. In the absence of glucose, the MPT blockers cyclosporin A and MeIle4-CsA but not the immunosuppressive compound FK506 diminished cell death. In contrast, following hyperglycemic IVI, MPT blockade was ineffective. Also, the pan-caspase inhibitor Boc-Asp(OMe)fluoromethyl ketone did not decrease cell death in the CA1 region following IVI or hyperglycemic IVI. We conclude that cell death in the CA1 region of organotypic murine hippocampal slices following IVI is highly temperature dependent and involves MPT. In contrast, cell death following hyperglycemic IVI, although completely prevented by hypothermia, is not mediated by mechanisms that involve MPT or caspase activation
- …