12 research outputs found

    Avoided metallicity in a hole-doped Mott insulator on a triangular lattice

    Full text link
    Charge carrier doping of a Mott insulator is known to give rise to a wide variety of exotic emergent states, from high-temperature superconductivity to various charge, spin, and orbital orders. The physics underpinning their evolution is, however, poorly understood. A major challenge is the chemical complexity associated with traditional routes to the addition or removal of carriers. Here, we study the Mott insulating CrO2_2 layer of the delafossite oxide PdCrO2_2, where an intrinsic polar catastrophe provides a clean route to induce substantial doping of the surface layer. Despite this, from scanning tunneling microscopy and angle-resolved photoemission, we find that the surface retains an insulating character, but with a modified electronic structure and the development of a short-range ordered state with a distinct (7×7)R±19.1∘(\sqrt{7}\times\sqrt{7})\mathrm{R}\pm 19.1^\circ periodicity. From density functional theory, we demonstrate how this reflects the formation of an intricate charge disproportionation that results in an insulating ground state of the surface layer that is disparate from the hidden Mott insulator found in the bulk. By applying voltage pulses to the surface layer, we induce substantial local modifications to this state, which we find relax on a time scale of tens of minutes, pointing to a glassy nature of the charge-disproportionated insulator realised here.Comment: manuscript and supplementary, 37 pages in total, 4 figures in the main text and 9 in the supplementar

    Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide

    Get PDF
    Funding: We gratefully acknowledge support from the Leverhulme Trust (Grant No. RL-2016-006 [P.D.C.K., B.E., T.A., A.R., C.B.]), the European Research Council (through the QUESTDO project, 714193 [P.D.C.K., G.R.S.]), the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 [P.D.C.K., P.A.E.M.] and EP/N032128/1 [D.A.M., G.B.]), and the Center for Computational Materials Science at the Institute for Materials Research for allocations on the MASAMUNE-IMR supercomputer system (Project No. 202112-SCKXX-0510 [R.B.V., M.S.B.]). S.B., E.A.M. and A.Z. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V1/3NbS2 using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS2 layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.PostprintPeer reviewe

    Hierarchy of Lifshitz Transitions in the Surface Electronic Structure of Sr<sub>2</sub>RuO<sub>4</sub> under Uniaxial Compression

    Get PDF
    We report the evolution of the electronic structure at the surface of the layered perovskite Sr2RuO4 under large in-plane uniaxial compression, leading to anisotropic B1g strains of Δxx − Δyy = −0.9±0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr2RuO4 hosts. From comparison to tight-binding modeling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of state singularities to the Fermi level, in turn paving the way to the possible realization of rich collective states at the Sr2RuO4 surface

    Avoided metallicity in a hole-doped Mott insulator on a triangular lattice

    Get PDF
    Doping of a Mott insulator gives rise to a wide variety of exotic emergent states, from high-temperature superconductivity to charge, spin, and orbital orders. The physics underpinning their evolution is, however, poorly understood. A major challenge is the chemical complexity associated with traditional routes to doping. Here, we study the Mott insulating CrO2 layer of the delafossite PdCrO2, where an intrinsic polar catastrophe provides a clean route to doping of the surface. From scanning tunnelling microscopy and angle-resolved photoemission, we find that the surface stays insulating accompanied by a short-range ordered state. From density functional theory, we demonstrate how the formation of charge disproportionation results in an insulating ground state of the surface that is disparate from the hidden Mott insulator in the bulk. We demonstrate that voltage pulses induce local modifications to this state which relax over tens of minutes, pointing to a glassy nature of the charge order

    Chemical trends of the bulk and surface termination-dependent electronic structure of metal-intercalated transition metal dichalcogenides

    Get PDF
    Funding: VINNOVA - 2018-04969; H2020 Research Infrastructures - 730872; Engineering and Physical Sciences Research Council - EP/L01548X/1, EP/N032128/1, EP/T02108X/1; H2020 European Research Council - 714193; Svenska ForskningsrÄdet Formas - 2019-02496; Leverhulme Trust - RL-2016-006, RPG-2023-253; Max-Planck-Gesellschaft.The addition of metal intercalants into the van der Waals gaps of transition metal dichalcogenides has shown great promise as a method for controlling their functional properties. For example, chiral helimagnetic states, current-induced magnetization switching, and a giant valley-Zeeman effect have all been demonstrated, generating significant renewed interest in this materials family. Here, we present a combined photoemission and density-functional theory study of three such compounds: V1/3NbS2, Cr1/3NbS2, and Fe1/3NbS2, to investigate chemical trends of the intercalant species on their bulk and surface electronic structure. Our resonant photoemission measurements indicate increased hybridization with the itinerant NbS2-derived conduction states with increasing atomic number of the intercalant, leading to pronounced mixing of the nominally localized intercalant states at the Fermi level. Using spatially and angle-resolved photoemission spectroscopy, we show how this impacts surface-termination-dependent charge transfers and leads to the formation of new dispersive states of mixed intercalant-Nb character at the Fermi level for the intercalant-terminated surfaces. This provides an explanation for the origin of anomalous states previously reported in this family of compounds and paves the way for tuning the nature of the magnetic interactions in these systems via control of the hybridization of the magnetic ions with the itinerant states.Peer reviewe

    Spin-orbit coupled spin-polarised hole gas at the CrSe<sub>2</sub>-terminated surface of AgCrSe<sub>2</sub>

    Get PDF
    In half-metallic systems, electronic conduction is mediated by a single spin species, offering enormous potential for spintronic devices. Here, using microscopic-area angle-resolved photoemission, we show that a spin-polarised two-dimensional hole gas is naturally realised in the polar magnetic semiconductor AgCrSe2 by an intrinsic self-doping at its CrSe2-terminated surface. Through comparison with first-principles calculations, we unveil a striking role of spin-orbit coupling for the surface hole gas, unlocked by both bulk and surface inversion symmetry breaking, suggesting routes for stabilising complex magnetic textures in the surface layer of AgCrSe2.</p

    Covalency, correlations, and interlayer interactions governing the magnetic and electronic structure of Mn3Si2Te6

    Get PDF
    Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy.We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6

    Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide

    No full text
    Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V1/3NbS2 using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS2 layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings

    Covalency, correlations, and interlayer interactions governing the magnetic and electronic structure of Mn<sub>3</sub>Si<sub>2</sub>Te<sub>6</sub>

    No full text
    Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations, to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbours and anti-symmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6

    Spin-orbit coupling induced Van Hove singularity in proximity to a Lifshitz transition in Sr4Ru3O10

    No full text
    Van Hove singularities (VHss) in the vicinity of the Fermi energy often play a dramatic role in the physics of strongly correlated electron materials. The divergence of the density of states generated by VHss can trigger the emergence of phases such as superconductivity, ferromagnetism, metamagnetism, and density wave orders. A detailed understanding of the electronic structure of these VHss is therefore essential for an accurate description of such instabilities. Here, we study the low-energy electronic structure of the trilayer strontium ruthenate Sr4Ru3O10, identifying a rich hierarchy of VHss using angle-resolved photoemission spectroscopy and millikelvin scanning tunneling microscopy. Comparison of k-resolved electron spectroscopy and quasiparticle interference allows us to determine the structure of the VHss and demonstrate the crucial role of spin-orbit coupling in shaping them. We use this to develop a minimal model from which we identify a mechanism for driving a field-induced Lifshitz transition in ferromagnetic metals
    corecore