10 research outputs found

    Compound heterozygous SCN5A mutations in severe sodium channelopathy with Brugada syndrome : a case report

    Get PDF
    Aims:Brugada syndrome (BrS) is an inherited cardiac arrhythmia with an increased risk for sudden cardiac death (SCD). About 20% of BrS cases are explained by mutations in theSCN5Agene, encoding the main cardiac sodium Na(v)1.5 channel. Here we present a severe case of cardiac sodium channelopathy with BrS caused bySCN5Acompound heterozygous mutations. We performed a genetic analysis ofSCN5Ain a male proband who collapsed during cycling at the age of 2 years. Because of atrial standstill, he received a pacemaker, and at the age of 3 years, he experienced a collapse anew with left-sided brain stroke. A later ECG taken during a fever unmasked a characteristic BrS type-1 pattern. The functional effect of the detected genetic variants was investigated. Methods and Results:Next-generation sequencing allowed the detection of twoSCN5Avariants intrans: c.4813+3_4813+6dupGGGT-a Belgian founder mutation-and c.4711 T>C, p.Phe1571Leu. A familial segregation analysis showed the presence of the founder mutation in the proband's affected father and paternal aunt and thede novooccurrence of the p.Phe1571Leu. The functional effect of the founder mutation was previously described as a loss-of-function. We performed a functional analysis of the p.Phe571Leu variant in HEK293 cells alone or co-expressed with the beta(1)-subunit. Compared to theSCN5Awild type, p.Phe1571Leu displayed a hyperpolarizing shift in the voltage dependence of inactivation (loss-of-function), while the activation parameters were unaffected. Using the peptide toxin nemertide alpha-1, the variant's loss-of-function effect could be restored due to a toxin-dependent reduction of channel inactivation. Conclusion:This is the first report providing support for the pathogenicity of the p.Phe1571LeuSCN5Avariant which, together with the c.4813+3_4813+6dupGGGT founder mutation, explains the severity of the phenotype of cardiac sodium channelopathy with BrS in the presented case

    Clinical and functional characterisation of a recurrent KCNQ1 variant in the Belgian population

    No full text
    BACKGROUND: The c.1124_1127delTTCA p.(Ile375Argfs*43) pathogenic variant is the most frequently identified molecular defect in the KCNQ1 gene in the cardiogenetics clinic of the Antwerp University Hospital. This variant was observed in nine families presenting with either Jervell-Lange-Nielsen syndrome or long QT syndrome (LQTS). Here, we report on the molecular, clinical and functional characterization of the KCNQ1 c.1124_1127delTTCA variant. RESULTS: Forty-one heterozygous variant harboring individuals demonstrated a predominantly mild clinical and electrophysiological phenotype, compared to individuals harboring other KCNQ1 pathogenic variants (5% symptomatic before 40 years of age, compared to 24% and 29% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers, respectively, 33% with QTc ≤ 440 ms compared to 10% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers). The LQTS phenotype was most comparable to that observed for the Swedish p.(Arg518*) founder mutation (7% symptomatic at any age, compared to 17% in p.(Arg518*) variant carriers, 33% with QTc ≤ 440 ms compared to 16% in p.(Arg518*) variant carriers). Surprisingly, short tandem repeat analysis did not reveal a common haplotype for all families. One KCNQ1 c.1124_1127delTTCA harboring patient was diagnosed with Brugada syndrome (BrS). The hypothesis of a LQTS/BrS overlap syndrome was supported by electrophysiological evidence for both loss-of-function and gain-of-function (acceleration of channel kinetics) in a heterologous expression system. However, BrS phenotypes were not identified in other affected individuals and allelic KCNQ1 expression testing in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) showed nonsense mediated decay of the c.1124_1127delTTCA allele. CONCLUSIONS: The c.1124_1127delTTCA frameshift variant shows a high prevalence in our region, despite not being confirmed as a founder mutation. This variant leads to a mild LQTS phenotype in the heterozygous state. Despite initial evidence for a gain-of-function effect based on in vitro electrophysiological assessment in CHO cells and expression of the KCNQ1 c.1124_1127delTTCA allele in patient blood cells, additional testing in iPSC-CMs showed lack of expression of the mutant allele. This suggests haploinsufficiency as the pathogenic mechanism. Nonetheless, as inter-individual differences in allele expression in (iPSC-) cardiomyocytes have not been assessed, a modifying effect on the BrS phenotype through potassium current modulation cannot be excluded. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-023-02618-4

    Compound heterozygous SCN5A mutations in severe sodium channelopathy with Brugada Syndrome : a case report

    Get PDF
    Aims:Brugada syndrome (BrS) is an inherited cardiac arrhythmia with an increased risk for sudden cardiac death (SCD). About 20% of BrS cases are explained by mutations in theSCN5Agene, encoding the main cardiac sodium Na(v)1.5 channel. Here we present a severe case of cardiac sodium channelopathy with BrS caused bySCN5Acompound heterozygous mutations. We performed a genetic analysis ofSCN5Ain a male proband who collapsed during cycling at the age of 2 years. Because of atrial standstill, he received a pacemaker, and at the age of 3 years, he experienced a collapse anew with left-sided brain stroke. A later ECG taken during a fever unmasked a characteristic BrS type-1 pattern. The functional effect of the detected genetic variants was investigated. Methods and Results:Next-generation sequencing allowed the detection of twoSCN5Avariants intrans: c.4813+3_4813+6dupGGGT-a Belgian founder mutation-and c.4711 T>C, p.Phe1571Leu. A familial segregation analysis showed the presence of the founder mutation in the proband's affected father and paternal aunt and thede novooccurrence of the p.Phe1571Leu. The functional effect of the founder mutation was previously described as a loss-of-function. We performed a functional analysis of the p.Phe571Leu variant in HEK293 cells alone or co-expressed with the beta(1)-subunit. Compared to theSCN5Awild type, p.Phe1571Leu displayed a hyperpolarizing shift in the voltage dependence of inactivation (loss-of-function), while the activation parameters were unaffected. Using the peptide toxin nemertide alpha-1, the variant's loss-of-function effect could be restored due to a toxin-dependent reduction of channel inactivation. Conclusion:This is the first report providing support for the pathogenicity of the p.Phe1571LeuSCN5Avariant which, together with the c.4813+3_4813+6dupGGGT founder mutation, explains the severity of the phenotype of cardiac sodium channelopathy with BrS in the presented case

    Morpho-functional comparison of differentiation protocols to create iPSC-derived cardiomyocytes

    No full text
    Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) offer an attractive platform for cardiovascular research. Patient-specific iPSC-CMs are very useful for studying disease development, and bear potential for disease diagnostics, prognosis evaluation and development of personalized treatment. Several monolayer-based serum-free protocols have been described for the differentiation of iPSCs into cardiomyocytes, but data on their performance are scarce. In this study, we evaluated two protocols that are based on temporal modulation of the Wnt/β-catenin pathway for iPSC-CM differentiation from four iPSC lines, including two control individuals and two patients carrying an SCN5A mutation. The SCN5A gene encodes the cardiac voltage-gated sodium channel (Na(v)1.5) and loss-of-function mutations can cause the cardiac arrhythmia Brugada syndrome. We performed molecular characterization of the obtained iPSC-CMs by immunostaining for cardiac specific markers and by expression analysis of selected cardiac structural and ionic channel protein-encoding genes with qPCR. We also investigated cell growth morphology, contractility and survival of the iPSC-CMs after dissociation. Finally, we performed electrophysiological characterization of the cells, focusing on the action potential (AP) and calcium transient (CT) characteristics using patch-clamping and optical imaging, respectively. Based on our comprehensive morpho-functional analysis, we concluded that both tested protocols result in a high percentage of contracting CMs. Moreover, they showed acceptable survival and cell quality after dissociation (>50% of cells with a smooth cell membrane, possible to seal during patch-clamping). Both protocols generated cells presenting with typical iPSC-CM AP and CT characteristics, although one protocol (that involves sequential addition of CHIR99021 and Wnt-C59) rendered iPSC-CMs, which were more accessible for patch-clamp and calcium transient experiments and showed an expression pattern of cardiac-specific markers more similar to this observed in human heart left ventricle samples

    Morpho-functional comparison of differentiation protocols to create iPSC-derived cardiomyocytes

    No full text
    Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) offer an attractive platform for cardiovascular research. Patient-specific iPSC-CMs are very useful for studying disease development, and bear potential for disease diagnostics, prognosis evaluation and development of personalized treatment. Several monolayer-based serum-free protocols have been described for the differentiation of iPSCs into cardiomyocytes, but data on their performance are scarce. In this study, we evaluated two protocols that are based on temporal modulation of the Wnt/beta-catenin pathway for iPSC-CM differentiation from four iPSC lines, including two control individuals and two patients carrying an SCN5A mutation. The SCN5A gene encodes the cardiac voltage-gated sodium channel (Na-v 1.5) and loss-of-function mutations can cause the cardiac arrhythmia Brugada syndrome. We performed molecular characterization of the obtained iPSC-CMs by immunostaining for cardiac specific markers and by expression analysis of selected cardiac structural and ionic channel protein-encoding genes with qPCR. We also investigated cell growth morphology, contractility and survival of the iPSC-CMs after dissociation. Finally, we performed electrophysiological characterization of the cells, focusing on the action potential (AP) and calcium transient (CT) characteristics using patch-clamping and optical imaging, respectively. Based on our comprehensive morpho-functional analysis, we concluded that both tested protocols result in a high percentage of contracting CMs. Moreover, they showed acceptable survival and cell quality after dissociation (>50% of cells with a smooth cell membrane, possible to seal during patch-clamping). Both protocols generated cells presenting with typical iPSC-CM AP and CT characteristics, although one protocol (that involves sequential addition of CHIR99021 and Wnt-059) rendered iPSC-CMs, which were more accessible for patch-clamp and calcium transient experiments and showed an expression pattern of cardiac-specific markers more similar to this observed in human heart left ventricle samples

    Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease

    No full text
    The electrocardiogram (ECG) can capture obesity-related cardiac changes. Artificial intelligence-enhanced ECG (AI-ECG) can identify subclinical disease. We trained an AI-ECG model to predict body mass index (BMI) from the ECG alone. Developed from 512,950 12-lead ECGs from the Beth Israel Deaconess Medical Center (BIDMC), a secondary care cohort, and validated on UK Biobank (UKB) (n = 42,386), the model achieved a Pearson correlation coefficient (r) of 0.65 and 0.62, and an R2 of 0.43 and 0.39 in the BIDMC cohort and UK Biobank, respectively for AI-ECG BMI vs. measured BMI. We found delta-BMI, the difference between measured BMI and AI-ECG-predicted BMI (AI-ECG-BMI), to be a biomarker of cardiometabolic health. The top tertile of delta-BMI showed increased risk of future cardiometabolic disease (BIDMC: HR 1.15, p < 0.001; UKB: HR 1.58, p < 0.001) and diabetes mellitus (BIDMC: HR 1.25, p < 0.001; UKB: HR 2.28, p < 0.001) after adjusting for covariates including measured BMI. Significant enhancements in model fit, reclassification and improvements in discriminatory power were observed with the inclusion of delta-BMI in both cohorts. Phenotypic profiling highlighted associations between delta-BMI and cardiometabolic diseases, anthropometric measures of truncal obesity, and pericardial fat mass. Metabolic and proteomic profiling associates delta-BMI positively with valine, lipids in small HDL, syntaxin-3, and carnosine dipeptidase 1, and inversely with glutamine, glycine, colipase, and adiponectin. A genome-wide association study revealed associations with regulators of cardiovascular/metabolic traits, including SCN10A, SCN5A, EXOG and RXRG. In summary, our AI-ECG-BMI model accurately predicts BMI and introduces delta-BMI as a non-invasive biomarker for cardiometabolic risk stratification
    corecore