82 research outputs found

    The systematic annotation of the three main GPCR families in Reactome

    Get PDF
    Reactome is an open-source, freely available database of human biological pathways and processes. A major goal of our work is to provide an integrated view of cellular signalling processes that spans from ligand–receptor interactions to molecular readouts at the level of metabolic and transcriptional events. To this end, we have built the first catalogue of all human G protein-coupled receptors (GPCRs) known to bind endogenous or natural ligands. The UniProt database has records for 797 proteins classified as GPCRs and sorted into families A/1, B/2 and C/3 on the basis of amino accid sequence. To these records we have added details from the IUPHAR database and our own manual curation of relevant literature to create reactions in which 563 GPCRs bind ligands and also interact with specific G-proteins to initiate signalling cascades. We believe the remaining 234 GPCRs are true orphans. The Reactome GPCR pathway can be viewed as a detailed interactive diagram and can be exported in many forms. It provides a template for the orthology-based inference of GPCR reactions for diverse model organism species, and can be overlaid with protein–protein interaction and gene expression datasets to facilitate overrepresentation studies and other forms of pathway analysis

    Toward a multiscale modeling framework for understanding serotonergic function

    Get PDF
    Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin

    Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium

    Get PDF
    Angiogenesis is characterised by activation, migration and proliferation of endothelial cells and is central to the pathology of cancer, cardiovascular disease and chronic inflammation. Somatostatin is an inhibitory polypeptide that acts through five receptors (sst 1, 2, 3, 4, 5). Sst has previously been reported in endothelium, but their role remains obscure. Here, we report the expression of sst in human umbilical vein endothelial cells (HUVECs) in vitro, during proliferation and quiescence. A protocol for culturing proliferating and quiescent HUVECs was established, and verified by analysing cell cycle distribution in propidium-iodide-stained samples using flow cytometry. Sst mRNA was then quantified in nine proliferating and quiescent HUVEC lines using quantitative reverse transcriptase–polymerase chain reaction. Sst 2 and 5 were preferentially expressed in proliferating HUVECs. All samples were negative for sst 4. Sst 1 and 3 expression and cell cycle progression were unrelated. Immunostaining for sst 2 and 5 showed positivity in proliferating but not quiescent cells, confirming sst 2 and 5 protein expression. Inhibition of proliferating cells with somatostatin analogues Octreotide and SOM230, which have sst 5 activity, was found (Octreotide 10−10–10−6 M: 48.5–70.2% inhibition; SOM230 10−9–10−6 M: 44.9–65.4% inhibition) in a dose-dependent manner, suggesting that sst 5 may have functional activity in proliferation. Dynamic changes in sst 2 and 5 expression during the cell cycle and the inhibition of proliferation with specific analogues suggest that these receptors may have a role in angiogenesis

    Genetic Evidence for Involvement of Neuronally Expressed S1P1 Receptor in Nociceptor Sensitization and Inflammatory Pain

    Get PDF
    Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P1 receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P1 receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P1 receptor. Our data show that neuronally expressed S1P1 receptors play a significant role in regulating nociceptor function and that S1P/S1P1 signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation

    Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>G protein coupled receptors (GPCRs) are one of the most widely studied gene superfamilies. Thousands of GPCR research studies have utilized heterologous expression systems such as human embryonic kidney cells (HEK293). Though often treated as 'blank slates', these cell lines nevertheless endogenously express GPCRs and related signaling proteins. The outcome of a given GPCR study can be profoundly influenced by this largely unknown complement of receptors and/or signaling proteins. Little easily accessible information exists that describes the expression profiles of the GPCRs in cell lines. What is accessible is often limited in scope - of the hundreds of GPCRs and related proteins, one is unlikely to find information on expression of more than a dozen proteins in a given cell line. Microarray technology has allowed rapid analysis of mRNA levels of thousands of candidate genes, but though often publicly available, the results can be difficult to efficiently access or even to interpret.</p> <p>Results</p> <p>To bridge this gap, we have used microarrays to measure the mRNA levels of a comprehensive profile of non-chemosensory GPCRs and over a hundred GPCR signaling related gene products in four cell lines frequently used for GPCR research: HEK293, AtT20, BV2, and N18.</p> <p>Conclusions</p> <p>This study provides researchers an easily accessible mRNA profile of the endogenous signaling repertoire that these four cell lines possess. This will assist in choosing the most appropriate cell line for studying GPCRs and related signaling proteins. It also provides a better understanding of the potential interactions between GPCRs and those signaling proteins.</p

    The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation

    Get PDF
    corecore