166 research outputs found

    The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study

    Get PDF
    Background: Current evidence suggests sodium bicarbonate (NaHCO3) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO3−) because of large inter-individual variations (10–180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible. Objective: This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO3− and sodium (Na+) following acute NaHCO3 ingestion. Methods: Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg−1 body mass (BM) NaHCO3 (SBC2a and b), two doses of 0.3 g·kg−1 BM NaHCO3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO3− and Na+ prior to and at regular time points following NaHCO3 ingestion over a 3-h period. Results: HCO3− displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO3− SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO3− SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041). Conclusion: Our results indicate that both TTP and absolute change in HCO3− is more reliable than pH. As such, these data provide support for an individualised NaHCO3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO3 ingestion strategy based on HCO3− responses and evaluate effects on exercise performance

    Whole number thinking, learning and development: neuro-cognitive, cognitive and developmental approaches

    Get PDF
    The participants of working group 2 presented a broad range of studies, 11 papers in total, related to whole number learning representing research groups from 11 countries as follows. Two large cross-sectional studies focused on developmental aspects of young children’s number learning provide a lens for re-examining ‘traditional’ features of number acquisition. van den Heuvel-Panhuizen (the Netherlands) presented a co-authored paper with Elia (Cyprus; Elia and van den Heuvel-Panhuizen 2015) on a cross-cultural study of kindergartners’ number competence focused on counting, additive and multiplicative thinking. Second, Milinković (2015) examined the development of young Serbian children’s initial understanding of representations of whole numbers and counting strategies in a large study of 3- to 7-year-olds. Children’s invented (formal) representations such as set representation and the number line were found to be limited in their recordings. In a South African study focused on early counting and addition, Roberts (2015) directs attention to the role of teachers by providing a framework to support teachers’ interpretation of young disadvantaged learners’ representations of number when engaging with whole number additive tasks. Some papers reflected the increasing role of neuroscientific concepts and methodologies utilised in research on WNA learning and development. Sinclair and Coles (2015) drew upon neuroscientific research to highlight the significant role of symbol-to-symbol connections and the use of fingers and touch counting exempli- fied by the TouchCounts iPad app. Gould (2015) reported aspects of a large Australian large study of children in the first years of schooling aimed at improving numeracy and literacy in disadvantaged communities. A case study exemplified how numerals were identified by relying on a mental number line by using location to retrieve number names. This raised the question addressed in the neuroscientific work of Dehaene and other papers focused on individual differences in how the brain processes numbers. The Italian PerContare1 project (Baccaglini-Frank 2015) built upon the collaboration between cognitive psychologists and mathematics educators, aimed at developing teaching strategies for preventing and addressing early low achievement in arithmetic. It takes an innovative approach to the development of number sense that is grounded upon a kinaesthetic and visual-spatial approach to part-whole relationships. Mulligan and Woolcott (2015) provided a discussion paper on the underlying nature of number. They presented a broader view of mathematics learning (including WNA) as linked to spatial interaction with the environment; the concept of connectivity across concepts and the development of underlying pattern and structural relationships are central to their approach

    The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of rear-foot (talocrural and subtalar joints) kinematics is critical for diagnosing foot pathologies, designing total ankle implants, treating rear-foot injuries and quantifying gait abnormalities. The majority of kinematic data available have been acquired through static cadaver work or passive <it>in vivo </it>studies. The applicability of these data to dynamic <it>in vivo </it>situations remains unknown. Thus, the purpose of this study was to fully quantify subtalar, talocrural and calcaneal-tibial <it>in vivo </it>kinematics in terms of the instantaneous helical axis (IHA) in twenty-five healthy ankles during a volitional activity that simulated single-leg toe-raises with partial-weight support, requiring active muscle control.</p> <p>Methods</p> <p>Subjects were each placed supine in a 1.5 T MRI and asked to repeat this simulated toe-raise while a full sagittal-cine-phase contrast (dynamic) MRI dataset was acquired. From the cine-phase contrast velocity a full kinematic description for each joint was derived.</p> <p>Results</p> <p>Nearly all motion quantified at the calcaneal-tibial joint was attributable to the talocrural joint. The subtalar IHA orientation and position were highly variable; whereas, the talocrural IHA orientation and position were extremely consistent.</p> <p>Conclusion</p> <p>The talocrural was well described by the IHA and could be modeled as a fixed-hinge joint, whereas the subtalar could not be.</p

    Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions

    Get PDF
    Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3-]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60 s work in their severe intensity domain and 30 s recovery at 20 W to exhaustion. Participants ingested either 0.3 g·kg bm-1 of NaHCO3 or a matched placebo of 0.21 g·kg bm-1 of sodium chloride prior to exercise. Exercise tolerance (+110.9 ± 100.6 s; 95% CI: 43.3 to 178 s; g = 1.0) and work performed in the severe intensity domain (+5.8 ± 6.6 kJ; 95% CI: 1.3 to 9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+4 ± 2.4 mmol·l-1; 95% CI: 2.2 to 5.9; g = 1.8), while blood [HCO3-] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance

    Psychosocial factors and health as determinants of quality of life in community-dwelling older adults.

    Get PDF
    PURPOSE: It is important to understand the determinants of differences in quality of life in old age and to include a wide range of possible predictors. The present study investigated the determinants of quality of life in two groups of older adults for whom there was an unusually informative set of possible predictor variables. METHOD: Participants were members of the Lothian Birth Cohorts of 1921 (n = 550) or 1936 (n = 1,091). Four facets of quality of life (QoL) and general QoL were measured using the WHOQOL-BREF. Possible determinants included personality traits, measured with the International Personality Item Pool (IPIP) scales; childhood and old age general cognitive ability, measured with the Moray House Test; minor psychological symptoms, measured with the Hospital Anxiety and Depression Scale (HADS); physical health, assessed by grip strength and cardiovascular disease history; and sociodemographic factors, assessed by interview. RESULTS: Linear regression analyses revealed that HADS depression had the greatest influence on quality of life. Personality traits, most notably Emotional Stability, also predicted quality of life to varying degrees, along with factors reflecting current life circumstances. There were differences between the two cohorts in the variables which predicted quality of life. There were different, conceptually relevant, contributions to the different QoL facets. CONCLUSIONS: Personality traits and minor depressive symptoms have an important influence on self-reported quality of life in old age. Quality of life may be influenced more by current than past circumstances, and this relationship may change with age

    Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>The genetic mechanisms of prostate tumorigenesis remain poorly understood, but with the advent of gene expression array capabilities, we can now produce a large amount of data that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis.</p> <p>Methods</p> <p>We conducted a meta-analysis of gene expression data from 18 gene array datasets targeting transition from normal to localized prostate cancer and from localized to metastatic prostate cancer. We functionally annotated the top 500 differentially expressed genes and identified several candidate pathways associated with prostate tumorigeneses.</p> <p>Results</p> <p>We found the top differentially expressed genes to be clustered in pathways involving integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility pathways. We also found integrins themselves to be downregulated in the transition from normal prostate tissue to primary localized prostate cancer. Based on the results of this study, we developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology, contributing to the histologic progression of prostate cancer and its increased metastasizing potential.</p> <p>Conclusion</p> <p>The results of this study suggest that prostate tumor progression is associated with the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by integrin-mediated cell death leads to increased cell proliferation and motility and increased tumor malignancy.</p

    Making effective use of healthcare data using data-to-text technology

    Full text link
    Healthcare organizations are in a continuous effort to improve health outcomes, reduce costs and enhance patient experience of care. Data is essential to measure and help achieving these improvements in healthcare delivery. Consequently, a data influx from various clinical, financial and operational sources is now overtaking healthcare organizations and their patients. The effective use of this data, however, is a major challenge. Clearly, text is an important medium to make data accessible. Financial reports are produced to assess healthcare organizations on some key performance indicators to steer their healthcare delivery. Similarly, at a clinical level, data on patient status is conveyed by means of textual descriptions to facilitate patient review, shift handover and care transitions. Likewise, patients are informed about data on their health status and treatments via text, in the form of reports or via ehealth platforms by their doctors. Unfortunately, such text is the outcome of a highly labour-intensive process if it is done by healthcare professionals. It is also prone to incompleteness, subjectivity and hard to scale up to different domains, wider audiences and varying communication purposes. Data-to-text is a recent breakthrough technology in artificial intelligence which automatically generates natural language in the form of text or speech from data. This chapter provides a survey of data-to-text technology, with a focus on how it can be deployed in a healthcare setting. It will (1) give an up-to-date synthesis of data-to-text approaches, (2) give a categorized overview of use cases in healthcare, (3) seek to make a strong case for evaluating and implementing data-to-text in a healthcare setting, and (4) highlight recent research challenges.Comment: 27 pages, 2 figures, book chapte
    • …
    corecore